Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We screened circadian-regulated genes in rat cartilage by using a DNA microarray analysis. In rib growth-plate cartilage, numerous genes showed statistically significant circadian mRNA expression under both 12:12 h light-dark and constant darkness conditions. Type II collagen and aggrecan genes--along with several genes essential for post-translational modifications of collagen and aggrecan, including prolyl 4-hydroxylase 1, lysyl oxidase, lysyl oxidase-like 2 and 3'-phosphoadenosine 5'-phosphosulphate synthase 2--showed the same circadian phase. In addition, the mRNA level of SOX9, a master transcription factor for the synthesis of type II collagen and aggrecan, has a similar phase of circadian rhythms. The circadian expression of the matrix-related genes may be critical in the development and the growth of various cartilages, because similar circadian expression of the matrix-related genes was observed in hip joint cartilage. However, the circadian phase of the major matrix-related genes in the rib permanent cartilage was almost the converse of that in the rib growth-plate cartilage under light-dark conditions. We also found that half of the oscillating genes had conserved clock-regulatory elements, indicating contribution of the elements to the clock outputs. These findings suggest that the synthesis of the cartilage matrix macromolecules is controlled by cell-autonomous clocks depending upon the in vivo location of cartilage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jb/mvt068 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!