Carbon disulfide as a dopant in photon-induced chemical ionization mass spectrometry.

Rapid Commun Mass Spectrom

Chemistry, I. K. Barber School of Arts & Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada, V1V 1 V7.

Published: September 2013

Rationale: The addition of a dopant to an Atmospheric Pressure PhotoIonization (APPI) source of a mass spectrometer has been shown to enhance the degree of analyte ionization. A series of different dopants has been successfully utilized; however, there has been very little published on the characteristics of a good dopant. We have proposed carbon disulfide (CS2) as a novel new dopant based on its absorption cross-section for the VUV photon's energy used and its unique gas-phase ion chemistry, notably the fact that it does not contain a proton.

Methods: The ability of CS2 to enhance the ionization effectiveness of APPI was tested by using a group of compounds that have different proton affinities (PAs) and electron affinities (EAs). These results were compared to results obtained using the commonly used dopants, toluene and anisole. Particular attention was paid to the formation of [M](+) ions relative to [M+H](+) ions. Mass spectra were collected using a Waters Quattro Premier liquid chromatography/tandem mass spectrometry (LC/MS/MS) system equipped with a commercial Photomate™ photoionization source.

Results: The results show that CS2 increases the ionization efficiency of most of the analytes studied in this work comparably to toluene and anisole. CS2 promotes both ionization routes of [M](+) and [M+H](+). In addition, due to the higher ionization energy (IE) of CS2 (10.01) compared to the IEs of toluene (8.83) and anisole (8.20), CS2 can enhance the ionization efficiency of analytes that cannot be enhanced with toluene and anisole.

Conclusions: We have determined that CS2 is a viable dopant for use in APPI sources. For some analytes, significant [M+H](+) ion signals are observed; therefore, the donated proton must come from either water clusters or solvents. In addition, CS2 promotes the ionization of analytes with low PAs and higher IEs than that of toluene and anisole.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.6644DOI Listing

Publication Analysis

Top Keywords

toluene anisole
12
carbon disulfide
8
ionization
8
mass spectrometry
8
cs2
8
cs2 enhance
8
enhance ionization
8
ionization efficiency
8
efficiency analytes
8
cs2 promotes
8

Similar Publications

This work presents a unique and straightforward method to synthesise hafnium oxide (HfO) and hafnium carbide (HfC) nanoparticles (NPs) and to fabricate hafnium nanostructures (NSs) on a Hf surface. Ultrafast picosecond laser ablation of the Hf metal target was performed in three different liquid media, namely, deionised water (DW), toluene, and anisole, to fabricate HfO and HfC NPs along with Hf NSs. Spherical HfO NPs and nanofibres were formed when Hf was ablated in DW.

View Article and Find Full Text PDF

We recorded and analyzed the microwave spectra of 2,5-dimethylanisole using a pulsed molecular jet Fourier transform microwave spectrometer and the newly developed Passage And Resonant-Impulse Synergy spectrometer across a frequency range of 2-26.5 GHz with support from quantum chemical calculations. Only one conformer was predicted and observed, where the methoxy group and its adjacent methyl group adopt anti-positions.

View Article and Find Full Text PDF

Linear and Nonlinear Rheological Investigations of Poly(3-hexylthiophene) H-Aggregated Gel Networks.

J Phys Chem B

December 2024

School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

Article Synopsis
  • Poly(3-hexylthiophene) (P3HT) is a popular material in organic electronics due to its easy synthesis and low cost, but achieving well-defined chain arrangements depends on the solvent polarity used.
  • Research shows that different organic solvents can lead to distinct aggregation types in P3HT: H-type aggregates in solvents like anisole and phenetole, and J-type aggregates in toluene.
  • P3HT’s behavior at low concentrations results in unique properties, such as H-type aggregates forming a gel network that halts solvent flow, while J-type aggregates do not, and further testing reveals detailed viscoelastic and structural properties of these P3HT networks.
View Article and Find Full Text PDF

Reductions of Arenes using a Magnesium-Dinitrogen Complex.

Chemistry

June 2024

School of Chemistry, Monash University, PO Box 23, 3800, Melbourne, Victoria, Australia.

In this contribution, we present "Birch-type", and other reductions of simple arenes by the potassium salt of an anionic magnesium dinitrogen complex, [{K(NON)Mg}(μ-N)] (NON=4,5-bis(2,4,6-tricyclohexylanilido)-2,7-diethyl-9,9-dimethyl-xanthene), which acts as a masked dimagnesium(I) diradical in these reactions. This reagent is non-hazardous, easy-to-handle, and in some cases provides access to 1,4-cyclohexadiene reduction products under relatively mild reaction conditions. This system works effectively to reduce benzene, naphthalene and anthracene through magnesium-bound "Birch-type" reduction intermediates.

View Article and Find Full Text PDF

Photonic Pigments of Polystyrene--Polyvinylpyrrolidone Bottlebrush Block Copolymers via Sustainable Organized Spontaneous Emulsification.

ACS Macro Lett

May 2024

Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China.

Prior studies on photonic pigments of amphiphilic bottlebrush block copolymers (BBCPs) through an organized spontaneous emulsification (OSE) mechanism have been limited to using polyethylene glycol (PEG) as the hydrophilic side chains and toluene as the organic phase. Herein, a family of polystyrene--polyvinylpyrrolidone (PS--PVP) BBCPs are synthesized with PVP as the hydrophilic block. Biocompatible and sustainable anisole is employed for dissolving the obtained BBCPs followed by emulsification of the solutions in water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!