A novel photoluminescent room-temperature liquid-crystalline salicylaldimine Schiff base with a short alkoxy substituent and a series of lanthanide(III) complexes of the type [Ln(LH)3(NO3)3] (Ln = La, Pr, Sm, Gd, Tb, Dy; LH = (E)-5-(hexyloxy)-2-[{2-(2-hydroxyethylamino)ethylimino]methyl}phenol) have been synthesized and characterized by FTIR, (1)H and (13)C NMR, UV/Vis, and FAB-MS analyses. The ligand coordinates to the metal ions in its zwitterionic form. The thermal behavior of the compounds was investigated by polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). The ligand exhibits an enantiotropic hexagonal columnar (Col(h)) mesophase at room temperature and the complexes show an enantiotropic lamellar columnar (Col(L)) phase at around 120 °C with high thermal stability. Based on XRD results, different space-filling models have been proposed for the ligand and complexes to account for the columnar mesomorphism. The ligand exhibits intense blue emission both in solution and in the condensed state. The most intense emissions were observed for the samarium and terbium complexes, with the samarium complex glowing with a bright-orange light (ca. 560-644 nm) and the terbium complex emitting green light (ca. 490-622 nm) upon UV irradiation. DFT calculations performed by using the DMol3 program at the BLYP/DNP level of theory revealed a nine-coordinate structure for the lanthanide complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201301666 | DOI Listing |
ACS Nano
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Perovskite nanocrystals (PNCs) are promising active materials because of their outstanding optoelectronic properties, which are finely tunable via size and shape. However, previous synthetic methods such as hot-injection and ligand-assisted reprecipitation require a high synthesis temperature or provide limited access to homogeneous PNCs, leading to the present lack of commercial value and real-world applications of PNCs. Here, we report a room-temperature approach to synthesize PNCs within a liquid crystalline antisolvent, enabling access to PNCs with a precisely defined size and shape and with reduced surface defects.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemical Science and Engineering, Institute of Science Tokyo, Tokyo 152-8552, Japan.
In recent years, π-conjugated liquid crystalline molecules with optoelectronic functionalities have garnered considerable attention, and integrating these molecules into side-chain liquid crystalline polymers (SCLCPs) holds potential for developing devices that are operational near room temperature. However, it is difficult to design SCLCPs with excellent processability because liquid crystalline mesogens are rigid rods, have low solubility in organic solvents, and have a high isotropization temperature. Recently, we developed near-room-temperature π-conjugated nematic liquid crystals based on "bridged stilbene".
View Article and Find Full Text PDFChem Sci
October 2024
Institute of Organic Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
Creating (room temperature) liquid crystalline TADF materials that retain the photophysical properties of the monomolecular TADF emitters remains a formidable challenge. The strong intramolecular interactions required for formation of a liquid crystal usually adversely affect the photophysical properties and balancing them is not yet possible. In this work, we present a novel host-guest approach enabling unperturbed, narrowband emission from an MR-TADF emissive core from strongly aggregated columnar hexagonal (Col) liquid crystals.
View Article and Find Full Text PDFJ Org Chem
November 2024
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China.
Adv Healthc Mater
December 2024
Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
Multiple stimuli-responsiveness is an attractive property that is studied in physical chemistry and materials chemistry. While, multiple stimuli-responsive phase change in an isothermal way is rarely addressed for functional materials at room temperature. In this study, one azobenzene-containing surfactant AZO is designed for the fabrication of triple stimuli-responsive phase change biomaterial (Alg-AZO) through the electrostatic complexation with natural alginate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!