Recognizing the degree of human attention using EEG signals from mobile sensors.

Sensors (Basel)

Department of Management Information Systems, National Pingtung University of Science & Technology, Neipu, Pingtung 912, Taiwan.

Published: August 2013

During the learning process, whether students remain attentive throughout instruction generally influences their learning efficacy. If teachers can instantly identify whether students are attentive they can be suitably reminded to remain focused, thereby improving their learning effects. Traditional teaching methods generally require that teachers observe students' expressions to determine whether they are attentively learning. However, this method is often inaccurate and increases the burden on teachers. With the development of electroencephalography (EEG) detection tools, mobile brainwave sensors have become mature and affordable equipment. Therefore, in this study, whether students are attentive or inattentive during instruction is determined by observing their EEG signals. Because distinguishing between attentiveness and inattentiveness is challenging, two scenarios were developed for this study to measure the subjects' EEG signals when attentive and inattentive. After collecting EEG data using mobile sensors, various common features were extracted from the raw data. A support vector machine (SVM) classifier was used to calculate and analyze these features to identify the combination of features that best indicates whether students are attentive. Based on the experiment results, the method proposed in this study provides a classification accuracy of up to 76.82%. The study results can be used as a reference for learning system designs in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812603PMC
http://dx.doi.org/10.3390/s130810273DOI Listing

Publication Analysis

Top Keywords

eeg signals
12
students attentive
12
mobile sensors
8
attentive inattentive
8
eeg
5
learning
5
attentive
5
recognizing degree
4
degree human
4
human attention
4

Similar Publications

Humans are excellent at modifying our behaviour depending on context. For example, humans will change how they explore when losses are possible compared to when they are not possible. However, it remains unclear what specific cognitive and neural processes are modulated when exploring in different contexts.

View Article and Find Full Text PDF

RMKD: Relaxed matching knowledge distillation for short-length SSVEP-based brain-computer interfaces.

Neural Netw

January 2025

Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), 138632, Singapore. Electronic address:

Accurate decoding of electroencephalogram (EEG) signals in the shortest possible time is essential for the realization of a high-performance brain-computer interface (BCI) system based on the steady-state visual evoked potential (SSVEP). However, the degradation of decoding performance of short-length EEG signals is often unavoidable due to the reduced information, which hinders the development of BCI systems in real-world applications. In this paper, we propose a relaxed matching knowledge distillation (RMKD) method to transfer both feature-level and logit-level knowledge in a relaxed manner to improve the decoding performance of short-length EEG signals.

View Article and Find Full Text PDF

Objectives: The actions and decisions of pilots are directly related to aviation safety. Therefore, understanding the neurological and cognitive processes of pilots during flight is essential. This study aims to investigate the EEG signals of pilots to understand the characteristic changes during the climb and descent stages of flight.

View Article and Find Full Text PDF

A generative adversarial network (GAN) makes it possible to map a data sample from one domain to another one. It has extensively been employed in image-to-image and text-to image translation. We propose an EEG-to-EEG translation model to map the scalp-mounted EEG (scEEG) sensor signals to intracranial EEG (iEEG) sensor signals recorded by foramen ovale sensors inserted into the brain.

View Article and Find Full Text PDF

Enhancing motor disability assessment and its imagery classification is a significant concern in contemporary medical practice, necessitating reliable solutions to improve patient outcomes. One promising avenue is the use of brain-computer interfaces (BCIs), which establish a direct communication pathway between users and machines. This technology holds the potential to revolutionize human-machine interaction, especially for individuals diagnosed with motor disabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!