In Hymenoptera, midgut changes begin in the last instar. At this stage, the larval epithelial digestive cells degenerate, leaving only the basal membrane and the regenerative cells which will develop into a new epithelium during the pupal stage and in the adult. Epithelium renewal is followed by changes in volume and shape of the midgut. Morphometric analysis of digestive cells and total midgut volume of Melipona quadrifasciata anthidioides (Lepeletier) were conducted to verify whether cell volume increase are sufficient to account for the total midgut volume increase that occurs during metamorphosis. An increase in midgut volume was verified in spite of the scarcity of cell proliferation found during metamorphosis. At the end of metamorphosis, the increase in cell volume was not sufficient to explain the increase in volume of the midgut, indicating that an increase in the number of digestive cells is apparently necessary. Nevertheless, the mechanism by which regenerative cells reconstitute the epithelium during metamorphosis remains unknown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s1519-566x2011000600007 | DOI Listing |
J Biochem
January 2025
Department of Comparative and Experimental Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
The uterine endometrium consists of luminal epithelium, glandular epithelium, and stromal cells, with uterine glands playing a pivotal role in pregnancy success among mammals. Uterine glands secrete essential factors that regulate embryo development and implantation; however, their cellular biology remains poorly understood. This study presents a refined method for isolating three distinct endometrial cell types with high purity, with a specific emphasis on glandular epithelial cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.
Intercellular transmission of messenger RNA (mRNA) is being explored in mammalian species using immortal cell lines. Here, we uncover an intercellular mRNA transfer phenomenon that allows for the adaptation and reprogramming of human primed pluripotent stem cells (hPSCs). This process is induced by the direct cell contact-mediated coculture with mouse embryonic stem cells under the condition impermissible for primed hPSC culture.
View Article and Find Full Text PDFJ Exp Med
March 2025
School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
Tissue-resident memory T cells (TRM) provide frontline protection against pathogens and emerging malignancies. Tumor-infiltrating lymphocytes (TIL) with TRM features are associated with improved clinical outcomes. However, the cellular interactions that program TRM differentiation and function are not well understood.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
CprA is a short-chain dehydrogenase/reductase (SDR) that contributes to resistance against colistin and antimicrobial peptides. The cprA gene is conserved across Pseudomonas aeruginosa clades and its expression is directly regulated by the two-component system PmrAB. We have shown that cprA expression leads to the production of outer membrane vesicles (OMVs) that block autophagic flux and have a greater capacity to activate the non-canonical inflammasome pathway.
View Article and Find Full Text PDFTurk J Gastroenterol
January 2025
Department of Gastrointestinal and Thoracic Surgery, Jiulongpo People's Hospital, Chongqing, China.
Background/aims: Colon adenocarcinoma (COAD) is a prevalent malignant tumor of the digestive system. Previous research has indicated that RNA N6-methyladenosine (m6A) methyltransferase RNA-binding motif protein-15 (RBM15) is involved in various cancers. We aimed to investigate the function of RBM15 in COAD progression and its underlying molecular mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!