Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers.

Opt Lett

OFS Laboratories, Somerset, New Jersey 08873, USA.

Published: July 2013

AI Article Synopsis

  • High-power fiber lasers at 1.5 μm are safe for eyes and work well in the atmosphere, making them desirable for various applications.
  • Researchers have developed a new high-efficiency design for cascaded Raman fiber lasers, which helps improve power output while addressing previous efficiency issues.
  • Their recent experiments and simulations led to a significant achievement: a 1480 nm cascaded Raman fiber laser that produces 301 W of power, rivaling records set by rare-earth-doped fiber lasers in the same wavelength range.

Article Abstract

High-power fiber lasers operating at the 1.5 μm wavelength region have attractive features, such as eye safety and atmospheric transparency, and cascaded Raman fiber lasers offer a convenient method to obtain high-power sources at these wavelengths. A limitation to power scaling, however, has been the lower conversion efficiency of these lasers. We recently introduced a high-efficiency architecture for high-power cascaded Raman fiber lasers applicable for 1.5 μm fiber lasers. Here we demonstrate further power scaling using this new architecture. Using numerical simulations, we identify the ideal operating conditions for the new architecture. We demonstrate a high-efficiency 1480 nm cascaded Raman fiber laser with an output power of 301 W, comparable to record power levels achieved with rare-earth-doped fiber lasers in the 1.5 μm wavelength region.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.38.002538DOI Listing

Publication Analysis

Top Keywords

fiber lasers
24
cascaded raman
16
raman fiber
16
power scaling
12
μm wavelength
8
wavelength region
8
fiber
7
lasers
7
power
5
scaling high-efficiency
4

Similar Publications

Motion-less depth-selective optogenetic probe using tapered fiber and an electrically tuneable liquid crystal steering element.

Biomed Opt Express

January 2025

Center for Optics, Photonics and Lasers, Department of Physics, Engineering Physics and Optics, Université Laval, 2375 Rue de la Terrasse, Québec, Québec G1V 0A6, Canada.

A miniature electrically tuneable liquid crystal component is used to steer light from -1° to +1° and then to inject into a simple tapered fiber. This allows the generation of various propagation modes, their leakage, and selective illumination of the surrounding medium at different depth levels without using mechanical movements nor deformation. The performance of the device is characterized in a reference fluorescence medium (Rhodamine 6G) as well as in a mouse brain (medullary reticular formation and mesencephalic locomotor regions) during in-vivo experiments as a proof of concept.

View Article and Find Full Text PDF

A novel, to the best of our knowledge, approach for the modal decomposition of a fiber laser beam is demonstrated using a spatial mode multiplexer. Since the modal decomposition is carried out optically, this approach is able to obtain the modal content at speeds up to the GHz level. In order to demonstrate such performance, we have applied this approach to the modal analysis of a -switched pulse generated in a multimode fiber with alternating intra-pulse mode content.

View Article and Find Full Text PDF

In this Letter, we report an ultraflat high-power supercontinuum (SC) based on a low-loss short-length fluorotellurite fiber. A novel high-peak power dual-Raman soliton femtosecond laser is used as a pump source, which effectively extends the mid-infrared SC spectral range and enhances the flatness of the SC. Finally, we obtained a 10.

View Article and Find Full Text PDF

We developed a 915-nm pumped, passively Q-switched 976-nm ytterbium all-fiber laser with an average output power of 4.3 W. The laser utilizes a 16-cm Yb gain fiber, passively Q-switched by a 1.

View Article and Find Full Text PDF

We investigate the enhanced terahertz generation in the organic crystal BNA when pumped by compressed high-energy ytterbium laser pulses. By compressing the pump pulses from 170 fs down to 43 fs using an argon-filled hollow-core fiber and chirped mirrors, the terahertz conversion efficiency is increased by 2.4 times, leading to the generation of multi-microjoule terahertz pulses with a frequency spectrum almost twice as wide, extending up to 19 THz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!