We propose and demonstrate a novel stable radio frequency (RF) delivery system based on a radio-over-fiber link. The proposed scheme acts as a long phase-locking loop where an optical tunable delay line is involved to compensate dynamically for the time-delay variation that arises from fiber-link fluctuation. An optical carrier with variable wavelength under fiber-link dispersion results in the desired tunable delay. The tunable range is in proportion to the length of the fiber link, so a large phase-error correction capacity under long-distance delivery can be realized. The large as well as fine optical-delay tunability is experimentally demonstrated, and the RF reference of 2.42 GHz is transferred for 54 km where a time jitter compression factor of 588 is achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.38.002419 | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory of Synthetic Chemistry, Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China.
Color-tunable white organic light-emitting diodes (CT-WOLEDs) have attracted widespread attention given their large color variation to meet the different daily scenarios from the perspective of circadian rhythm. However, most reported CT-WOLEDs, especially the tri-color devices, exhibit poor performances and sophisticated structures. Here, a simple structure tri-color CT-WOLED is demonstrated that simultaneously exhibits high efficiency, ultralong operation lifetime, and wide color-tunable range for dynamic sunlight emulation.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of physical science and technology, ShanghaiTech University, Shanghai 201210, China.
Implanting heteroatoms into organic π-conjugated molecules (OCMS) offered a great opportunity to fine-tune the chemical structures and optoelectronic properties. This work describes a new family of 1,4-azaphosphinines with extended σ-π hyperconjugations. The photophysical studies revealed that azaphosphinines exhibited narrow-band thermally activated delayed fluorescence (TADF) ( full width at half-maximum: 26-40 nm).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China.
Time-dependent afterglow colored (TDAC) behavior differs from static afterglow by involving wavelength changes, enabling low-cost, high-level encryption and anti-counterfeiting. However, the existing carbon dot (CD)-based TDAC materials lack a clear mechanistic explanation and controllable wavelength changes, significantly hindering the progress of practical applications in this field. In this study, we synthesized CDs composites with customizable tunable TDAC wavelengths across the visible region.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China.
The application of temperature-compensated photonic device is hampered by poor accuracy and overly simplistic functions of propagation in photonic integrated circuits (PICs) field. Herein, we report a new library of donor-acceptor metal-organic framework (D-A MOF) with thermally activated delayed fluorescence (TADF) and the fabricating of temperature-compensated photonic device by virtue of the unique temperature response character of TADF emitters. Highly tunable through-space charge transfer (TSCT) of TADF was realized within the D-A MOFs through a novel strategy that synergistically combines the internal heavy atom effect (HAE) with an external HAE, induced by the incorporation of heavy atoms into different components, achieving the regulable photophysical indicators including adjustable PL wavelength (534 to 592 nm) and surging quantum yield (5.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!