Leukocytes can rapidly migrate virtually within any substrate found in the body at speeds up to 100 times faster than mesenchymal cells that remain firmly attached to a substrate even when migrating. To understand the flexible migration strategy utilized by leukocytes, we experimentally investigated the three-dimensional modulation of cortical plasticity during the formation of pseudopodial protrusions by mouse leukocytes isolated from blood. The surfaces of viable leukocytes were discretely labeled with fluorescent beads that were covalently conjugated with concanavalin A receptors. The movements of these fluorescent beads were different at the rear, central, and front surfaces. The beads initially present on the rear and central dorsal surfaces of the cell body flowed linearly toward the rear peripheral surface concomitant with a significant collapse of the cell body in the dorsal-ventral direction. In contrast, those beads initially on the front surface moved into a newly formed pseudopodium and exhibited rapid, random movements within this pseudopodium. Bead movements at the front surface were hypothesized to have resulted from rupture of the actin cytoskeleton and detachment of the plasma membrane from the actin cytoskeletal cortex, which allowed leukocytes to migrate while being minimally constrained by a substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2013.08.010DOI Listing

Publication Analysis

Top Keywords

three-dimensional modulation
8
modulation cortical
8
cortical plasticity
8
mouse leukocytes
8
fluorescent beads
8
rear central
8
beads initially
8
cell body
8
front surface
8
leukocytes
6

Similar Publications

The functional properties of tetraaryl compounds, M(aryl) (M = transition metal or group 14 element), are dictated not only by their common tetrahedral geometry but also by their central atom. The identity of this atom may serve to modulate the reactivity, electrochemical, magnetic, and optical behavior of the molecular species, or of extended materials built from appropriate tetraaryl building blocks, but this has not yet been systematically evaluated. Toward this goal, here we probe the influence of Os(IV), C, and Si central atoms on the spectroelectrochemical properties of a series of redox-active tetra(ferrocenylaryl) complexes.

View Article and Find Full Text PDF

Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons.

View Article and Find Full Text PDF

Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.

View Article and Find Full Text PDF

Stimuli-responsive hydrogels hold immense promise for biomedical applications, but conventional gelation processes often struggle to achieve the precision and complexity required for advanced functionalities such as soft robotics, targeted drug delivery, and tissue engineering. This study introduces a class of 3D-printable magnetic hydrogels with tunable stiffness, adhesion, and magnetic responsiveness, prepared through a simple and efficient "one-pot" method. This approach enables precise control over the hydrogel's mechanical properties, with an elastic modulus ranging from 43 kPa to 277 kPa, tensile strength from 93 kPa to 421 kPa, and toughness from 243 kJ/m to 1400 kJ/m, achieved by modulating the concentrations of acrylamide (AM) and FeO nanoparticles.

View Article and Find Full Text PDF

Conjugated coordination polymers (c-CPs), a novel class of organic-inorganic hybrid materials, are distinguished by their unique structural characteristics and exceptional charge transport properties. The electronic properties of these materials are critically determined by the constituting coordination atoms, with electron-rich selenol ligands emerging as promising candidates for constructing high-mobility semiconducting c-CPs. Currently, c-CPs incorporating selenium-substituted ligands remain scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!