Zn(x)Cd(1-x)S quantum dots-based white light-emitting diodes.

Opt Lett

Institute of Materials Science and Engineering, National Central University, Taoyuan, Taiwan.

Published: June 2013

In this study, two kinds of colloidal ternary semiconductor white light-emitting quantum dots (WQDs), Zn(0.5)Cd(0.5)S and Zn(0.8)Cd(0.2)S, are prepared and used as nanophosphors in a UV light-emitting diode (UV-LED) pumping device. When the weight ratio of Zn(0.5)Cd(0.5)S WQDs is 9.1 wt. % in silicone and the drive current is set at 20 mA, the chromaticity coordinates (CIE), correlated color temperature (CCT), color rendering index (CRI), and luminous efficiency are (0.43,0.37), 2830 K, 90, and 0.94 lm/W, respectively. On the other hand, under the same weight ratio in silicone, the CIE, CCT, CRI, and luminous efficiency of Zn(0.8)Cd(0.2)S WQDs are (0.36,0.33), 4240 K, 86, and 4.12 lm/W, respectively. Based on the above results, we can conclude that WQDs-based LED can be obtained by controlling the compositions of Zn(x)Cd(1-x)S QDs due to the coexistence of band-edge and surface state emission.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.38.002080DOI Listing

Publication Analysis

Top Keywords

white light-emitting
8
weight ratio
8
cri luminous
8
luminous efficiency
8
znxcd1-xs quantum
4
quantum dots-based
4
dots-based white
4
light-emitting diodes
4
diodes study
4
study kinds
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!