Energy-efficient utilization of bipolar optical forces in nano-optomechanical cavities.

Opt Express

Micro and Nano systems Initiative, Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576.

Published: July 2013

AI Article Synopsis

  • Nanoscale all-optical circuits driven by optical forces show promise for energy-efficient communication, computation, and sensing devices.
  • Researchers successfully demonstrated the use of resonance modes in photonic crystal cavities to create both attractive (-6.2 nN) and repulsive (1.9 nN) optical forces with minimal power input.
  • By using integrated nanoelectromechanical systems, they separated the shifts caused by the optomechanical effect from those due to thermal effects, finding that optomechanical shifts are significantly more efficient at converting light energy into mechanical energy.

Article Abstract

Nanoscale all-optical circuits driven by optical forces have broad applications in future communication, computation, and sensing systems. Because human society faces huge challenges of energy saving and emission reduction, it is very important to develop energy-efficient nano-optomechanical devices. Due to their high quality (Q) factors, resonance modes of cavities are capable of generating much larger forces than waveguide modes. Here we experimentally demonstrate the use of resonance modes of double-coupled one-dimensional photonic crystal cavities to generate bipolar optical forces. Attractive and repulsive forces of -6.2 nN and 1.9 nN were obtained with respective launching powers of 0.81 mW and 0.87 mW in the waveguide just before cavities. Supported by flexible nanosprings (spring constant 0.166 N/m), one cavity is pulled to (pushed away from) the other cavity by 37.1 nm (11.4 nm). The shifts of the selected resonance modes of the device are mechanically and thermally calibrated with an integrated nanoelectromechanical system actuator and a temperature-controlled testing platform respectively. Based on these experimentally-obtained relations, probe mode shifts due to the optomechanical effect are decoupled from those due to the thermo-optic effect. Actuated by the third-order even pump mode, the optomechanical shift of the second-order even probe mode is found to be about 2.5 times its thermal shift, indicating a highly efficient conversion of light energy to mechanical energy.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.018398DOI Listing

Publication Analysis

Top Keywords

optical forces
12
resonance modes
12
bipolar optical
8
probe mode
8
forces
5
energy-efficient utilization
4
utilization bipolar
4
forces nano-optomechanical
4
cavities
4
nano-optomechanical cavities
4

Similar Publications

Disappearing and reappearing of structure order in colloidal photonic crystals.

Phys Chem Chem Phys

January 2025

State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Mechanoresponsive colloidal photonic crystals embedded in elastic solid matrices exhibit tunable optical properties under mechanical force, showing great potential for various applications. However, the response of colloidal crystals embedded in a liquid matrix remains largely unexplored. In this study, we investigate the structural and optical transitions of colloidal crystals composed of particles suspended in a liquid oligomer under pressing and shear forces.

View Article and Find Full Text PDF

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

Purpose: The corneal epithelium is the outermost layer of the cornea. It plays a vital role in both normal and pathological conditions of the eye surface and serves as a protective layer. This study aimed to evaluate corneal epithelial thickness (ET) and create a normative database of corneal ET for pediatric and adult age groups using MS-39 AS-OCT.

View Article and Find Full Text PDF

Liquid biopsies are expected to advance cancer management, and particularly physical cues are gaining attention for indicating tumorigenesis and metastasis. Atomic force microscopy (AFM) has become a standard and important tool for detecting the mechanical properties of single living cells, but studies of developing AFM-based methods to efficiently measure the mechanical properties of circulating tumor cells (CTCs) in liquid biopsy for clinical utility are still scarce. Herein, we present a proof-of-concept study based on the complementary combination of AFM and microfluidics, which allows label-free sorting of individual CTCs and subsequent automated AFM measurements of the mechanical properties of CTCs.

View Article and Find Full Text PDF

Observation of Real-Time Spin-Orbit Torque Driven Dynamics in Antiferromagnetic Thin Film.

Adv Mater

January 2025

Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA.

In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra-fast, energy-efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin-orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!