The optical absorption properties of a-Si:H have acquired much attention in solar cell(SC) research. In this paper, we studied enhancement of light absorption in the a-Si:H(10%H) SCs with thicknesses from 31.25nm to 2μm and with nano textures of the column-shaped nanohole (CLNH) array and of the cone-shaped nanohole (CNNH) array, via the Finite Difference Time Domain (FDTD) simulation. For a given type of nano texture and film thickness, d, the ultimate efficiency, the ideal efficiency without considering carrier combinations, is optimized over array period, p, and filling fraction, f, and is defined as the optimized ultimate efficiency, η(0). The simulation results demonstrated that: even for the CLNH textured a-Si:H(10%H) SCs as thin as 62.5 nm,η(0) is 19.7%. When the a-Si:H(10%H) SC is thinner than a critical depth of about 250nm, the CLNH texture is more efficient than the CNNH texture, and vice versa. When the thicknesses of SCs are very thin, especially smaller than 100nm, the efficiencies of the a-Si:H(10%H) SCs are evidently higher than those of the c-Si SCs. For example, in the CLNH arrays, when d = 62.5nm, η(0)for the a-Si:H(10%H) SCs is higher than the c-Si SCs by a factor of approximate 2.3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.018043 | DOI Listing |
Endocrine
December 2024
Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland.
Purpose: Severe Cushing's syndrome (SCS) is a life-threatening endocrine condition that requires prompt medical intervention. Intravenous etomidate infusion is considered to be the most effective in rapid cortisol overproduction inhibition. This single-center retrospective study aimed to present the safety and effectiveness of intravenous, low-dose, lipid-formulated etomidate infusion in patients with SCS.
View Article and Find Full Text PDFASAIO J
December 2024
Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.
Donation after circulatory death (DCD) livers face increased risks of critical complications when preserved with static cold storage (SCS). Although machine perfusion (MP) may mitigate these risks, its cost and logistical complexity limit widespread application. We developed the Dynamic Organ Storage System (DOSS), which delivers oxygenated perfusate at 10°C with minimal electrical power requirement and allows real-time effluent sampling in a portable cooler.
View Article and Find Full Text PDFSensors (Basel)
November 2024
The State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
This paper presents a comprehensive optimization of an outer frame anchor disk resonator gyroscope (DRG) with enhanced resistance to vibration and shock, achieved by increasing the resonant frequency of the tub and translation modes. Furthermore, the wineglass mode retains a high quality factor, enhancing sensitivity and reducing the angle random walk (ARW). The performance of the proposed DRG is analyzed using dynamic equations, and its structural parameters are optimized through finite element analysis (FEA).
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Achieving deep-blue light with high color saturation remains a critical challenge in the development of white light-emitting diode (LED) technology, necessitating luminescent materials that excel in efficiency, low toxicity, and stability. Here, we report the synthesis of [N(CH)]CuI (TEACuI) single crystals (SCs), which exhibit deep-blue photoluminescence (PL) at 450 nm. These crystals are characterized by a significant Stokes shift of 180 nm, a long lifetime of 1.
View Article and Find Full Text PDFSmall
December 2024
Institute of Physics of the Czech Academy of Sciences, Prague, 16200, Czech Republic.
The miniaturization of electrochemical supercapacitors (EC-SCs) requires electrode materials that are both durable and efficient. Boron-doped diamond (BDD) films are an ideal choice for EC-SC due to their durability and exceptional electrochemical performance. In this study, nanostructured boron-doped ultra-nanocrystalline diamonds (NBUNCD) are fabricated on Si micro-pyramids (Si) using a simple reactive ion etching (RIE) process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!