Optical absorption is usually considered deleterious, something to avoid if at all possible. We propose a broadband nanoabsorber that completely eliminates the diffracting wave, resulting in a subwavelength enhancement of the field. Broadband operation is made possible by engineering the dispersion of the complex dielectric function. The local enhancement can be significantly improved compared to the standard plane wave illumination of a metallic nanoparticle. Our numerical simulation shows that an optical pulse as short as 6 fs can be focused to a 11 nm region. Not only the local field, but also its gradient are greatly enhanced, pointing to applications in ultrafast nonlinear spectroscopy, sensing and communication with deep-subwavelength resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.017435 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!