A hybrid plasmonic waveguide consisting of a high-index dielectric core embedded inside a rectangular-shaped metallic trench is proposed and its guiding properties are investigated at the wavelength of 1550 nm. Numerical simulations based on the finite element method have demonstrated that the introduced dielectric core could greatly reduce the modal loss of the metal trench while maintaining strong confinement of light. The effects of dielectric core size, material of the cladding and the dielectric core on the modal properties have been systematically investigated. The proposed hybrid plasmonic structure can be realized employing fabrication techniques of the traditional metal trench waveguides and could be leveraged as important elements for highly-integrated photonic circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.017053 | DOI Listing |
Int J Biol Macromol
March 2025
Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China. Electronic address:
In recent years, the phenomenon of zinc pollution in orchards has become increasingly serious, and the safety of apple production is facing a major risk. Therefore, exploring excellent genes for zinc tolerance has a positive effect on apples. Up to now, there is still a lack of attention on genes related to zinc stress tolerance in apples.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Institute of Wide Bandgap Semiconductors and Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China.
The progression of SiC MOSFET technology from planar to trench structures requires optimized gate oxide layers within the trench to enhance device performance. In this study, we investigated the interface characteristics of HfO and SiO/HfO gate dielectrics grown by atomic layer deposition (ALD) on SiC trench structures. The trench structure morphology was revealed using scanning electron microscopy (SEM).
View Article and Find Full Text PDFAdv Mater
March 2025
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Applied Physics, University of Science and Technology Beijing, Beijing, 100083, China.
Pb-free dielectric energy storage capacitors are core components in advanced pulse-power electronic systems and devices. However, the relatively low energy density (W) for the industrial pillar BaTiO (BT)-based capacitors remains a significant obstacle for their cutting-edge applications, due to their low intrinsic polarization and breakdown strength (E). Herein, through chemical composition and local structure design, a giant W of 15.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 Anhui, China; Key Laboratory of Adv. Funct. Mater. and Devices of Anhui Province, Hefei 230009, China. Electronic address:
The development of an efficient electromagnetic interference (EMI) shielding material that balances the paradoxical relationship between low thickness and ultra-low reflectivity is highly significant for mitigating secondary electromagnetic wave pollution. In this work, a sandwich structure consisting of thermoplastic composite, porous foam, and conductive film was meticulously designed, employing a modular assembly strategy. This design aims to tackle the challenge by optimally leveraging the inherent advantages of each individual layer, thereby enhancing the overall performance and functionality of the structure.
View Article and Find Full Text PDFNanoscale
March 2025
College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
With society progressing toward intelligent systems and the escalating challenges of electromagnetic radiation, the demand for advanced electromagnetic wave (EMW)-absorbing materials has intensified. The prevalent methodology combines magnetic components with dielectric matrices to harness interfacial synergy, enabling concurrent optimization of impedance matching and enhancement in functionality. With better understanding of absorption mechanisms, there has been an increase in microscopic studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!