An optical identity authentication scheme based on the elliptic curve digital signature algorithm (ECDSA) and phase retrieval algorithm (PRA) is proposed. In this scheme, a user's certification image and the quick response code of the user identity's keyed-hash message authentication code (HMAC) with added noise, serving as the amplitude and phase restriction, respectively, are digitally encoded into two phase keys using a PRA in the Fresnel domain. During the authentication process, when the two phase keys are presented to the system and illuminated by a plane wave of correct wavelength, an output image is generated in the output plane. By identifying whether there is a match between the amplitude of the output image and all the certification images pre-stored in the database, the system can thus accomplish a first-level verification. After the confirmation of first-level verification, the ECDSA signature is decoded from the phase part of the output image and verified to allege whether the user's identity is legal or not. Moreover, the introduction of HMAC makes it almost impossible to forge the signature and hence the phase keys thanks to the HMAC's irreversible property. Theoretical analysis and numerical simulations both validate the feasibility of our proposed scheme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.52.005645 | DOI Listing |
SAR QSAR Environ Res
December 2024
School of Computing and Data Sciences, FLAME University, Pune, India.
This study illustrates the use of chemical fingerprints with machine learning for blood-brain barrier (BBB) permeability prediction. Employing the Blood Brain Barrier Database (B3DB) dataset for BBB permeability prediction, we extracted nine different fingerprints. Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost) algorithms were used to develop models for permeability prediction.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronic and Nanoscale Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
In the era of the Internet of Things (IoT), the transmission of medical reports in the form of scan images for collaborative diagnosis is vital for any telemedicine network. In this context, ensuring secure transmission and communication is necessary to protect medical data to maintain privacy. To address such privacy concerns and secure medical images against cyberattacks, this research presents a robust hybrid encryption framework that integrates quantum, and classical cryptographic methods.
View Article and Find Full Text PDFJ Mol Graph Model
March 2025
Department of Chemistry, Faculty of Science and Technology, Muban ChomBueng Rajabhat University, Chom Bueng, Ratchaburi, 70150, Thailand. Electronic address:
Retinol, α-tocopherol and phylloquinone (vitamins A, E, and K) are presented in high concentrations within the chloroplast and leaves of most plants. They are fat-soluble vitamins and absorb similarly to other dietary lipids. Because the molecular mechanism of retinol, α-tocopherol, and phylloquinone absorption is still unknown, this work aims to investigate the distribution of these vitamins at the water/membrane interface using molecular dynamics (MD) simulations.
View Article and Find Full Text PDFJ Behav Ther Exp Psychiatry
March 2025
Department of Neuroscience, Imaging and Clinical Science, University "G. d'Annunzio" Chieti-Pescara, Via Luigi Polacchi, 11 66103 Chieti (CH), Italy.
Background And Objectives: Clinical practice reveals that individuals with autism characterized by the absence of cognitive impairment (High Functioning Autism-HFA) show difficulty in sharing attention with unfamiliar people. We hypothesized that this difficulty could affect cognitive control by selectively impairing stimulus-encoding or response-selection.
Methods: Twenty-one HFA and 23 neurotypical adults were involved in a two-phase study.
Nano Converg
December 2024
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Topological surface states, protected by the global symmetry of the materials, are the keys to understanding various novel electrical, magnetic, and optical properties. TaSb is a newly discovered topological material with unique transport phenomena, including negative magnetoresistance and resistivity plateau, whose microscopic understanding is yet to be reached. In this study, we investigate the electronic band structure of TaSb using angle-resolved photoemission spectroscopy and density functional theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!