Background: Glial cell line-derived neurotrophic factor (GDNF) is the most promising neurotrophin for restorative treatments in Parkinson's disease, but its biological effects are not completely understood.

Objective: To define a model of GDNF gene therapy in the mouse, we studied the long-term effects of lentiviral GDNF delivery in mice with striatal 6-hydroxydopamine (6-OHDA) lesions.

Methods: Lentiviral vectors coding for GDNF or green fluorescent protein (GFP) were injected unilaterally in the striatum two weeks prior to the 6-OHDA lesion. Mice were monitored on tests of spontaneous activity and amphetamine-induced rotation at 1, 4, 10 and 35 weeks post-lesion. Brains were processed immunohistochemically for tyrosine hydroxylase (TH) and markers of extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation at the same time points.

Results: Lentiviral GDNF significantly inhibited both spontaneous and amphetamine-induced rotation. Compared to the control vector, lentiviral GDNF resulted in a partial protection of TH-positive cells in the substantia nigra, and in a nearly total restoration of striatal TH immunostaining by 35 weeks. A progressive sprouting of TH-positive neurites occurred in both the globus pallidus and the substantia nigra, reaching a 4-5 fold increase above controls by 35 weeks. This effect was paralleled by a long-term supranormal activation of ERK1/2 and its downstream target, phospho-Ser31 TH.

Conclusions: Lentiviral GDNF delivery produced robust long-term signaling responses and neurorestoration. This experimental model of GDNF gene therapy will be particularly suitable to study the molecular mechanisms of dopaminergic fiber sprouting, a long-term response to GDNF delivery that also occurs in Parkinson's disease patients.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JPD-012146DOI Listing

Publication Analysis

Top Keywords

lentiviral gdnf
16
model gdnf
12
gdnf gene
12
gene therapy
12
gdnf delivery
12
gdnf
9
erk1/2 activation
8
parkinson's disease
8
amphetamine-induced rotation
8
substantia nigra
8

Similar Publications

Adipose-derived stem cells modified by TWIST1 silencing accelerates rat sciatic nerve repair and functional recovery.

Hum Cell

September 2024

Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.

The regeneration of peripheral nerves after injury is often slow and impaired, which may be associated with weakened and denervated muscles subsequently leading to atrophy. Adipose-derived stem cells (ADSCs) are often regarded as cell-based therapeutic candidate due to their regenerative potential. The study aims to assess the therapeutic efficacy of gene-modified ADSCs on sciatic nerve injury.

View Article and Find Full Text PDF

Salidroside improves cognitive function in Parkinson's disease via Braf-mediated mitogen‑activated protein kinase signaling pathway.

Biomed Pharmacother

August 2024

Nanjing Medical University, Nanjing, Jiangsu Province 211166, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China. Electronic address:

Objective: To delve into the underlying mechanism of Salidroside (Sal) on the improvement of cognitive function in Parkinson's Disease (PD).

Methods: The experimental mice were divided into Control group, Model group [injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)], and Model+Sal (low concentration, high concentration) group. Mouse hippocampal tissues were extracted for RNA sequencing to obtain the core pathway and core gene.

View Article and Find Full Text PDF

GDNF triggers proliferation of rat C6 glioma cells via the NF-κB/CXCL1 signaling pathway.

PLoS One

August 2023

National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor that is characterized by its high proliferative and migratory potential, leading to a high invasiveness of this tumor type. However, the underlying mechanism of GBM proliferation and migration has not been fully elucidated. In this study, at first, we used RNA-seq together with bioinformatics technology to screen for C-X-C motif ligand 1 (CXCL1) as a proliferation-related gene.

View Article and Find Full Text PDF

Background: Glial cell-line-derived neurotrophic factor (GDNF) is a well-known regulatory neurotrophic factor on dopaminergic neurons. Several pathologies have been documented so far in case of any impairment in the dopaminergic system. This study aimed to investigate the potential protective role of lentiviral GNDF delivery on the small population of tyrosine hydroxylase (TH) positive dopamine producing striatal neurons after ischemic stroke.

View Article and Find Full Text PDF

We have recently demonstrated that neural stem cell-based intravitreal co-administration of glial cell line-derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) confers profound protection to injured retinal ganglion cells (RGCs) in a mouse optic nerve crush model, resulting in the survival of ~38% RGCs two months after the nerve lesion. Here, we analyzed whether this neuroprotective effect is long-lasting and studied the impact of the pronounced RGC rescue on axonal regeneration. To this aim, we co-injected a GDNF- and a CNTF-overexpressing neural stem cell line into the vitreous cavity of adult mice one day after an optic nerve crush and determined the number of surviving RGCs 4, 6 and 8 months after the lesion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!