Tropoelastin: a versatile, bioactive assembly module.

Acta Biomater

School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia; Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia. Electronic address:

Published: April 2014

Elastin provides structural integrity, biological cues and persistent elasticity to a range of important tissues, including the vasculature and lungs. Its critical importance to normal physiology makes it a desirable component of biomaterials that seek to repair or replace these tissues. The recent availability of large quantities of the highly purified elastin monomer, tropoelastin, has allowed for a thorough characterization of the mechanical and biological mechanisms underpinning the benefits of mature elastin. While tropoelastin is a flexible molecule, a combination of optical and structural analyses has defined key regions of the molecule that directly contribute to the elastomeric properties and control the cell interactions of the protein. Insights into the structure and behavior of tropoelastin have translated into increasingly sophisticated elastin-like biomaterials, evolving from classically manufactured hydrogels and fibers to new forms, stabilized in the absence of incorporated cross-linkers. Tropoelastin is also compatible with synthetic and natural co-polymers, expanding the applications of its potential use beyond traditional elastin-rich tissues and facilitating finer control of biomaterial properties and the design of next-generation tailored bioactive materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879170PMC
http://dx.doi.org/10.1016/j.actbio.2013.08.003DOI Listing

Publication Analysis

Top Keywords

tropoelastin
5
tropoelastin versatile
4
versatile bioactive
4
bioactive assembly
4
assembly module
4
module elastin
4
elastin structural
4
structural integrity
4
integrity biological
4
biological cues
4

Similar Publications

Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease.

Int Angiol

December 2024

Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -

The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.

View Article and Find Full Text PDF

Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines.

In Vitro Model

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, F-59000 Lille, France.

Background: Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells.

View Article and Find Full Text PDF

Unveiling the therapeutic journey of snail mucus in diabetic wound care.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.

A diabetic wound (DW) is an alteration in the highly orchestrated physiological sequence of wound healing especially, the inflammatory phase. These alterations result in the generation of oxidative stress and inflammation at the injury site. This further leads to the impairment in the angiogenesis, extracellular matrix, collagen deposition, and re-epithelialization.

View Article and Find Full Text PDF

Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.

View Article and Find Full Text PDF

The Staphylococcus genus, composed of Gram-positive bacteria, includes several pathogenic species such as Staphylococcus aureus, S. epidermidis, S. haemolyticus, and S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!