Biogenesis of yeast Mia40 - uncoupling folding from import and atypical recognition features.

FEBS J

Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece; Department of Biology, University of Crete, Heraklion, Greece.

Published: October 2013

The discovery of the mitochondrial intermembrane space assembly (MIA) pathway was followed by studies that focused mainly on the typical small substrates of this disulfide relay system and the interactions between its two central partners: the oxidoreductase Mia40 and the FAD-protein Erv1. Recent studies have revealed that more complex proteins utilize this pathway, including Mia40 itself. In the present study, we dissect the Mia40 biogenesis in distinct stages, supporting a kinetically coordinated sequence of events, starting with (a) import and insertion through the Tim23 translocon, followed by (b) folding of the core of imported Mia40 assisted by the endogenous Mia40 and (c) final interaction with Erv1. The interaction with endogenous Mia40 and the subsequent interaction with Erv1 represent kinetically distinguishable steps that rely on completely different determinants. Interaction with Mia40 proceeds very early (within 30 s) and is characterized by no Cys-specificity, an increased tolerance to mutations of the hydrophobic substrate-binding cleft and no apparent dependence on glutathione as a proofreading mechanism. All of these features illustrate a very atypical behaviour for the Mia40 precursor compared to other substrates of the MIA pathway. By contrast, interaction with Erv1 occurs after 5 min of import and relies on a more stringent specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.12482DOI Listing

Publication Analysis

Top Keywords

interaction erv1
12
mia40
9
mia pathway
8
endogenous mia40
8
interaction
5
biogenesis yeast
4
yeast mia40
4
mia40 uncoupling
4
uncoupling folding
4
folding import
4

Similar Publications

Identification and characterization of endogenous retroviruses upon SARS-CoV-2 infection.

Front Immunol

April 2024

Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China.

Endogenous retroviruses (ERVs) derived from the long terminal repeat (LTR) family of transposons constitute a significant portion of the mammalian genome, with origins tracing back to ancient viral infections. Despite comprising approximately 8% of the human genome, the specific role of ERVs in the pathogenesis of COVID-19 remains unclear. In this study, we conducted a genome-wide identification of ERVs in human peripheral blood mononuclear cells (hPBMCs) and primary lung epithelial cells from monkeys and mice, both infected and uninfected with SARS-CoV-2.

View Article and Find Full Text PDF

In health, commensal bacteria from oral biofilms stimulate polymorphonuclear neutrophil (PMN) recruitment in gingival sulci and the oral cavity. Oral PMN (oPMN) is short-lived cells with low prosurvival gene expression. In periodontitis, oPMN accumulates in higher numbers, has extended lifespan, and sustains nonresolving inflammation.

View Article and Find Full Text PDF

Import and oxidative folding of proteins in the mitochondrial intermembrane space differ among eukaryotic lineages. While opisthokonts such as yeast rely on the receptor and oxidoreductase Mia40 in combination with the Mia40:cytochrome oxidoreductase Erv, kinetoplastid parasites and other Excavata/Discoba lack Mia40 but have a functional Erv homologue. Whether excavate Erv homologues rely on a Mia40 replacement or directly interact with imported protein substrates remains controversial.

View Article and Find Full Text PDF

Yeast is a facultative anaerobe and uses diverse electron acceptors to maintain redox-regulated import of cysteine-rich precursors via the mitochondrial intermembrane space assembly (MIA) pathway. With the growing diversity of substrates utilizing the MIA pathway, understanding the capacity of the intermembrane space (IMS) to handle different types of stress is crucial. We used MS to identify additional proteins that interacted with the sulfhydryl oxidase Erv1 of the MIA pathway.

View Article and Find Full Text PDF

Erv1 and Cytochrome c Mediate Rapid Electron Transfer via A Collision-Type Interaction.

J Mol Biol

July 2021

Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931Cologne, Germany. Electronic address:

Being essential for oxidative protein folding in the mitochondrial intermembrane space, the mitochondrial disulfide relay relies on the electron transfer (ET) from the sulfhydryl oxidase Erv1 to cytochrome c (Cc). Using solution NMR spectroscopy, we demonstrate that while the yeast Cc-Erv1 system is functionally active, no observable binding of the protein partners takes place. The transient interaction between Erv1 and Cc can be rationalized by molecular modeling, suggesting that a large surface area of Erv1 can sustain a fast ET to Cc via a collision-type mechanism, without the need for a canonical protein complex formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!