Angiotensin-I converting enzyme (ACE) occupies a pivotal role in cardiovascular homeostasis. Major loci for plasma ACE have been identified at ACE on Chromosome 17 and at ABO on Chromosome 9. We sought to characterise the genetic architecture of plasma ACE at finer resolution in two populations. We carried out a GWAS in 1810 individuals of Japanese ethnicity; this identified signals at ACE and ABO that together accounted for nearly half of the population variability of the trait. We conducted measured haplotype analysis at the ABO locus in 1425 members of 248 British families using haplotypes of three SNPs, which together tagged the alleles responsible for the principal blood group antigens A1, A2, B and O. Type O alleles were associated with intermediate plasma ACE activity compared to Type A1 alleles (in whom plasma ACE activity was ∼36% lower) and Type B alleles (in whom plasma ACE activity was ∼36% higher). We demonstrated heterogeneity among A alleles: A2 alleles were associated with plasma ACE activity that was very similar to the O alleles. Variation at ACE accounted for 35% of the trait variance, and variation at ABO accounted for 15%. A further 10% could be ascribed to polygenic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ahg.12034DOI Listing

Publication Analysis

Top Keywords

plasma ace
24
ace activity
16
type alleles
12
ace
10
angiotensin-i converting
8
converting enzyme
8
blood group
8
abo accounted
8
alleles associated
8
alleles plasma
8

Similar Publications

Background: Systemic lupus erythematosus (SLE) is a complex and incurable autoimmune disease, so several drug remission for SLE symptoms have been developed and used at present. However, treatment varies by patient and disease activity, and existing medications for SLE were far from satisfactory. Novel drug targets to be found for SLE therapy are still needed.

View Article and Find Full Text PDF

Renin-angiotensin-aldosterone system activation in plasma as marker for prognosis in critically ill patients with COVID-19: a prospective exploratory study.

Ann Intensive Care

January 2025

Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria.

Background: Acute respiratory distress syndrome (ARDS) associated with coronavirus infectious disease (COVID)-19 has been a challenge in intensive care medicine for the past three years. Dysregulation of the renin-angiotensin system (RAS) is linked to COVID-19, but also to non-COVID-19 ARDS. It is still unclear whether changes in the RAS are associated with prognosis of severe COVID-19.

View Article and Find Full Text PDF

As several decades of research have shown the cardioprotective effects of angiotensin-converting enzyme (ACE) inhibitors alone or in combination with diuretics, we were interested in investigating the effects of subchronic therapy of these drugs on ischemia-reperfusion (I/R) damage to the heart, as well as their influence on oxidative status. The research was conducted on 40 spontaneously hypertensive male Wistar Kyoto rats, divided into 4 groups. Animals were treated for four weeks with 10 mg/kg/day zofenopril alone or in combination with hydrochlorothiazide, indapamide and spironolactone per os.

View Article and Find Full Text PDF

Direct Vascular Effects of Angiotensin II (A Systematic Short Review).

Int J Mol Sci

December 2024

Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary.

The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies.

View Article and Find Full Text PDF

Background: Epidemiological and genetic studies have elucidated associations between antihypertensive medication and Alzheimer's disease (AD), with the directionality of these associations varying upon the specific class of antihypertensive agents.

Methods: Genetic instruments for the expression of antihypertensive drug target genes were identified using expression quantitative trait loci (eQTL) in blood, which are associated with systolic blood pressure (SBP). Exposure was derived from existing eQTL data in blood from the eQTLGen consortium and in the brain from the PsychENCODE and subsequently replicated in GTEx V8 and BrainMeta V2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!