Background And Purpose: Angiotensin II has been implicated in the development of various cardiovascular ailments, including cardiac hypertrophy and heart failure. The fact that inhibiting its signalling reduced the incidences of both sudden cardiac death and heart failure in several large-scale clinical trials suggests that angiotensin II is involved in increased cardiac arrhythmogenicity during the development of heart failure. However, because angiotensin II also promotes structural remodelling, including cardiomyocyte hypertrophy and cardiac fibrosis, it has been difficult to assess its direct contribution to cardiac arrhythmogenicity independently of the structural effects.
Experimental Approach: We induced cardiac hypertrophy in wild-type (WT) and angiotensin II type 1a receptor knockout (AT1aR-KO) mice by transverse aortic constriction (TAC). The susceptibility to ventricular tachycardia (VT) assessed in an in vivo electrophysiological study was compared in the two genotypes. The effect of acute pharmacological blockade of AT1R on the incidences of arrhythmias was also assessed.
Key Results: As described previously, WT and AT1aR-KO mice with TAC developed cardiac hypertrophy to the same degree, but the incidence of VT was much lower in the latter. Moreover, although TAC induced an increase in tyrosine phosphorylation of connexin 43, a critical component of gap junctional channels, and a reduction in ventricular levels of connexin 43 protein in both genotypes, the effect was significantly ameliorated in AT1aR-KO mice. Acute pharmacological blockade of AT1R also reduced the incidence of arrhythmias.
Conclusions And Implications: Our findings demonstrate that AT1aR-mediated signalling makes a direct contribution to the increase in arrhythmogenicity in hypertrophied hearts independently of structural remodelling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838685 | PMC |
http://dx.doi.org/10.1111/bph.12328 | DOI Listing |
Hypertension
January 2025
Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan. (Y. Zhao, T. Sakurai, A.K., M.T., Y.I.-S., H.K., Y.M., Y. Zhang, Q.G., P.L., K.H., M.H., J.L., T. Shindo).
Background: Adrenomedullin 2 (AM2) plays critical roles in regulating blood pressure and fluid balance. However, the specific involvement of AM2 in cardiac hypertrophy has not been comprehensively elucidated, warranting further investigation into its molecular mechanisms and therapeutic implications.
Methods: Cardiac hypertrophy was induced in adult mice lacking AM2 (AM2-/-) using transverse aortic constriction surgery.
Eur Heart J Case Rep
January 2025
Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan.
Background: Transthyretin cardiac amyloidosis is associated with various arrhythmias, including atrioventricular block. Despite this correlation, established treatments for transthyretin cardiac amyloidosis-associated arrhythmias are lacking. Left bundle branch area pacing is a promising physiological pacing technique.
View Article and Find Full Text PDFJ Pathol
January 2025
Cardiorenal Translational Laboratory, Imas12 Research Institute, Hospital Universitario 12 de Octubre, Madrid, Spain.
Ischaemic heart disease (IHD) remains a major cause of death and morbidity. Klotho is a well-known anti-ageing factor with relevant cardioprotective actions, at least when renal dysfunction is present, but its actions are much less known when renal function is preserved. This study investigated Klotho as a biomarker and potential novel treatment of IHD-associated complications after myocardial infarction (MI) under preserved renal function.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
January 2025
Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. Electronic address:
Background: Patients after kidney transplantation (KTx) in childhood show a high prevalence of cardiac complications, but the underlying mechanism is still poorly understood. In adults, myocardial fibrosis detected in cardiac magnetic resonance (CMR) imaging is already an established risk factor. Data for children after KTx are not available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!