Objective: To investigate the direct effect of onabotulinumtoxinA (OnaBotA) on bladder afferent nerve activity and release of ATP and acetylcholine (ACh) from the urothelium.
Materials And Methods: Bladder afferent nerve activity was recorded using an in vitro mouse preparation enabling simultaneous recordings of afferent nerve firing and intravesical pressure during bladder distension. Intraluminal and extraluminal ATP, ACh, and nitric oxide (NO) release were measured using the luciferin-luciferase and Amplex(®) Red assays (Molecular Probes, Carlsbad, CA, USA), and fluorometric assay kit, respectively. OnaBotA (2U), was applied intraluminally, during bladder distension, and its effect was monitored for 2 h after application. Whole-nerve activity was analysed to classify the single afferent units responding to physiological (low-threshold [LT] afferent <15 mmHg) and supra-physiological (high-threshold [HT] afferent >15 mmHg) distension pressures.
Results: Bladder distension evoked reproducible pressure-dependent increases in afferent nerve firing. After exposure to OnaBotA, both LT and HT afferent units were significantly attenuated. OnaBotA also significantly inhibited ATP release from the urothelium and increased NO release.
Conclusion: These data indicate that OnaBotA attenuates the bladder afferent nerves involved in micturition and bladder sensation, suggesting that OnaBotA may exert its clinical effects on urinary urgency and the other symptoms of overactive bladder syndrome through its marked effect on afferent nerves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bju.12266 | DOI Listing |
Am J Gastroenterol
November 2024
Division of Neurogastroenterology/Motility, Medical College of Georgia, Augusta University, Augusta, Georgia.
Anorectal neuropathy causes anorectal dysfunction, yet it is poorly recognized. This stems from both a lack of understanding of the extrinsic and intrinsic innervation of the anorectum and tools for evaluation of neuronal function. Our objective was to provide an improved understanding of the neuronal networks of the anorectum and discuss its functional significance.
View Article and Find Full Text PDFNat Commun
January 2025
School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo.
View Article and Find Full Text PDFJ Neurosci
January 2025
Sony Computer Science Laboratories Inc., Tokyo, Japan.
Dexterous motor skills, like those needed for playing musical instruments and sports, require the somatosensory system to accurately and rapidly process somatosensory information from multiple body parts. This is challenging due to the convergence of afferent inputs from different body parts into a single neuron and the overlapping representation of neighboring body parts in the somatosensory cortices. How do trained individuals, such as pianists and athletes, manage this? Here, a series of five experiments with pianists and nonmusicians (female and male) shows that pianists have enhanced inhibitory function in the somatosensory system, which isolates the processing of somatosensory afferent inputs from each finger.
View Article and Find Full Text PDFJAMA Ophthalmol
January 2025
Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland.
J Physiol
December 2024
Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada.
The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!