Mycobacteria in Finnish cooling tower waters.

APMIS

Department of Environmental Science, University of Eastern Finland, Kuopio, Finland.

Published: April 2014

Evaporative cooling towers are water systems used in, e.g., industry and telecommunication to remove excess heat by evaporation of water. Temperatures of cooling waters are usually optimal for mesophilic microbial growth and cooling towers may liberate massive amounts of bacterial aerosols. Outbreaks of legionellosis associated with cooling towers have been known since the 1980's, but occurrences of other potentially pathogenic bacteria in cooling waters are mostly unknown. We examined the occurrence of mycobacteria, which are common bacteria in different water systems and may cause pulmonary and other soft tissue infections, in cooling waters containing different numbers of legionellae. Mycobacteria were isolated from all twelve cooling systems and from 92% of the 24 samples studied. Their numbers in the positive samples varied from 10 to 7.3 × 10(4) cfu/L. The isolated species included M. chelonae/abscessus, M. fortuitum, M. mucogenicum, M. peregrinum, M. intracellulare, M. lentiflavum, M. avium/nebraskense/scrofulaceum and many non-pathogenic species. The numbers of mycobacteria correlated negatively with the numbers of legionellae and the concentration of copper. The results show that cooling towers are suitable environments for potentially pathogenic mycobacteria. Further transmission of mycobacteria from the towers to the environment needs examination.

Download full-text PDF

Source
http://dx.doi.org/10.1111/apm.12153DOI Listing

Publication Analysis

Top Keywords

cooling towers
16
cooling waters
12
cooling
9
water systems
8
numbers legionellae
8
mycobacteria
6
towers
5
mycobacteria finnish
4
finnish cooling
4
cooling tower
4

Similar Publications

Water footprint which is not the water footprint: Critical review of the article by Müller et al. (2024).

J Environ Manage

January 2025

Výzkumný ústav Vodohospodářský T. G. Masaryka, Podbabská 2582/30, 160 00 Praha, Czech Republic. Electronic address:

This paper presents a critical analysis of the article "Comparison of cooling tower blowdown and enhanced make up water treatment to minimize cooling water footprint" by Müller et al. (2024), which claims to reduce the water footprint (WF) of cooling circuits. The WF concept, introduced in 2002, has evolved with two main approaches: the "volumetric" approach, quantifying water consumption, and the "impact-oriented" approach, assessing impacts associated with water usage.

View Article and Find Full Text PDF

Direct air capture (DAC) is a promising technology for mitigating global climate change but suffers from low efficiency, small scale, and high cost due to the dilute atmospheric CO, limited size of air contactors, and heat-driven CO release. Here, we propose combining DAC with widely used industrial cooling towers to extract CO from the air and using electrolysis to release the captured CO at room temperature. We first prepare a buffered absorbent solution consisting of sodium glycinate, glycine, and sodium chloride for effective CO capture from the air, solving the incompatibility problem of the cooling towers with conventional absorbents.

View Article and Find Full Text PDF

Performance assessment of solar tower collector based integrated system for the cogeneration of power and cooling.

Heliyon

November 2024

Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah, 11952, Saudi Arabia.

Integrating solar energy systems is an essential measure in advancing worldwide sustainability objectives and offers a sustainable, environmentally friendly approach to reducing greenhouse gas emissions and pollutants. To this direction, the proposed system integrating solar tower collector, supercritical CO, organic Rankine cycle, and single effect absorption refrigeration cycles shows potential as an efficient and sustainable solution for meeting energy and cooling demands. A detailed thermodynamic evaluation has been performed to gain valuable understanding of the energy and exergy performance, enabling the assessment of thermal and exergy efficiencies, exergy destructions, and heat losses.

View Article and Find Full Text PDF

In this paper, a wind tunnel experiment was carried out to study the atmospheric flow and pollutant diffusion around a super-large natural ventilation cooling tower of a nuclear power plant. Considering the effect of the natural ventilation of the cooling tower, with the chimney as the center, X-type hot-wire probes were used to measure the average flow field and turbulence structure of the atmosphere around the cooling tower and other complexes, and pollutant diffusion studies were carried out by tracer experiments. The results show that the super-large natural ventilation cooling tower and its thermal plume emission have a significant effect on pollutant flow and diffusion, changing the trajectory of the plume.

View Article and Find Full Text PDF

Increase in energy demand is shaping both developed and developing countries globally. As a result, the endeavour to reduce carbon emissions also encompasses electrical energy storage systems to ensure environmentally friendly power production and distribution. Currently, the scientific community is actively exploring and developing new storage technologies for this purpose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!