TMEFF2 modulates the AKT and ERK signaling pathways.

Int J Biochem Mol Biol

Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University Greenville, USA.

Published: August 2013

The transmembrane protein with epidermal growth factor (EGF) and two follistatin (FS) motifs 2 (TMEFF2) has a limited tissue distribution with strong expression only in brain and prostate. While TMEFF2 is overexpressed in prostate cancer indicating an oncogenic role, several studies indicate a tumor suppressor role for this protein. This dual mode of action is, at least in part, the result of metalloproteinase-dependent shedding that generates a soluble TMEFF2 ectodomain with a growth promoting function. While recent studies have shed some light on the biology of different forms of TMEFF2, little is known about the molecular mechanisms that influence its oncogenic/tumor suppressive function. In several non-prostate cell lines, it has been shown that a recombinant form of the TMEFF2 ectodomain can interact with platelet derived growth factor (PDGF)-AA to suppress PDGF receptor signaling and can promote ErbB4 and ERK1/2 phosphorylation. However, the role of the full length TMEFF2 in these pathways has not been examined. Using prostate cell lines, here we examine the role of TMEFF2 in ERK and Akt activation, two pathways implicated in prostate cancer progression and that have been shown to cross talk in several cancers. Our results show that different forms of TMEFF2 distinctly affect Akt and ERK activation and this may contribute to a different cellular response of either proliferation or tumor suppression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729255PMC

Publication Analysis

Top Keywords

tmeff2
9
akt erk
8
growth factor
8
prostate cancer
8
tmeff2 ectodomain
8
forms tmeff2
8
cell lines
8
tmeff2 modulates
4
modulates akt
4
erk signaling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!