Local and regional-scale knowledge of climate change is needed to model ecosystem responses, assess vulnerabilities and devise effective adaptation strategies. High-resolution gridded historical climate (GHC) products address this need, but come with multiple sources of uncertainty that are typically not well understood by data users. To better understand this uncertainty in a region with a complex climatology, we conducted a ground-truthing analysis of two 4 km GHC temperature products (PRISM and NRCC) for the US Northeast using 51 Cooperative Network (COOP) weather stations utilized by both GHC products. We estimated GHC prediction error for monthly temperature means and trends (1980-2009) across the US Northeast and evaluated any landscape effects (e.g., elevation, distance from coast) on those prediction errors. Results indicated that station-based prediction errors for the two GHC products were similar in magnitude, but on average, the NRCC product predicted cooler than observed temperature means and trends, while PRISM was cooler for means and warmer for trends. We found no evidence for systematic sources of uncertainty across the US Northeast, although errors were largest at high elevations. Errors in the coarse-scale (4 km) digital elevation models used by each product were correlated with temperature prediction errors, more so for NRCC than PRISM. In summary, uncertainty in spatial climate data has many sources and we recommend that data users develop an understanding of uncertainty at the appropriate scales for their purposes. To this end, we demonstrate a simple method for utilizing weather stations to assess local GHC uncertainty and inform decisions among alternative GHC products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731317 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070260 | PLOS |
Foods
December 2024
Department of Physiology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.
This study investigates the effects of different temperature conditions on the quality of black garlic (BG) during the aging process. Two temperature protocols were employed: gradual heating and cooling (GHC), where the temperature was slowly raised from 45 °C to 77 °C and then lowered to 59 °C at a rate of 1 °C per hour, and rapid heating and cooling (RHC), where the temperature was quickly raised from 45 °C to 85 °C and then lowered to 56 °C at a rate of 1 °C every 30 min. Changes in surface color, hardness, moisture, pH, fructose, total polyphenol content (TPC), and key sulfur compounds such as alliin, S-allylcysteine (SAC), and γ-glutamyl-S-allylcysteine (γ-GSAC) were analyzed.
View Article and Find Full Text PDFJ Glob Health
November 2024
Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
Cell Stem Cell
November 2024
Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China. Electronic address:
Health Econ Rev
September 2024
Department of Population and Health, University of Cape Coast, Cape Coast, Ghana.
Background: Type 1 diabetes (T1D) management exerts a considerable financial burden on patients, caregivers, and developing nations at large. In Ghana, a key governments effort to attenuate the financial burden of T1D on patients was to fashion safety-net mechanisms through financial risk pooling/sharing known as the National Health Insurance Scheme (NHIS). However, there is limited research on patients and caregivers' experiences with the cost of managing T1D within the NHIS in Ghana.
View Article and Find Full Text PDFActa Biomater
October 2024
Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China. Electronic address:
Superficial cartilage defects represent the most prevalent type of cartilage injury encountered in clinical settings, posing significant treatment challenges. Here, we fabricated a cartilage extracellular matrix mimic hydrogel (GHC, consisting of Gelatin, Hyaluronic acid, and Chondroitin sulfate) to avoid the exacerbation of cartilage deterioration, which is often driven by the accumulation of reactive oxygen species (ROS) and a pro-inflammatory microenvironment. The GHC hydrogel exhibited multifunctional properties, including in situ formation, tissue adhesiveness, anti-ROS capabilities, and the promotion of chondrogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!