Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The epithelial-to-mesenchymal transition (EMT) is a de-differentiation process that has been implicated in metastasis and the generation of cancer initiating cells (CICs) in solid tumors. To examine EMT in non-small cell lung cancer (NSCLC), we utilized a three dimensional (3D) cell culture system in which cells were co-stimulated with tumor necrosis factor alpha (TNF) and transforming growth factor beta (TGFβ). NSCLC spheroid cultures display elevated expression of EMT master-switch transcription factors, TWIST1, SNAI1/Snail1, SNAI2/Slug and ZEB2/Sip1, and are highly invasive. Mesenchymal NSCLC cultures show CIC characteristics, displaying elevated expression of transcription factors KLF4, SOX2, POU5F1/Oct4, MYCN, and KIT. As a result, these putative CIC display a cancer "stem-like" phenotype by forming lung metastases under limiting cell dilution. The pleiotropic transcription factor, NF-κB, has been implicated in EMT and metastasis. Thus, we set out to develop a NSCLC model to further characterize the role of NF-κB activation in the development of CICs. Here, we demonstrate that induction of EMT in 3D cultures results in constitutive NF-κB activity. Furthermore, inhibition of NF-κB resulted in the loss of TWIST1, SNAI2, and ZEB2 induction, and a failure of cells to invade and metastasize. Our work indicates that NF-κB is required for NSCLC metastasis, in part, by transcriptionally upregulating master-switch transcription factors required for EMT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728367 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068597 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!