The skin secretion of many amphibians contains an arsenal of bioactive molecules, including hormone-like peptides (HLPs) acting as defense toxins against predators, and antimicrobial peptides (AMPs) providing protection against infectious microorganisms. Several amphibian taxa seem to have independently acquired the genes to produce skin-secreted peptide arsenals, but it remains unknown how these originated from a non-defensive ancestral gene and evolved diverse defense functions against predators and pathogens. We conducted transcriptome, genome, peptidome and phylogenetic analyses to chart the full gene repertoire underlying the defense peptide arsenal of the frog Silurana tropicalis and reconstruct its evolutionary history. Our study uncovers a cluster of 13 transcriptionally active genes, together encoding up to 19 peptides, including diverse HLP homologues and AMPs. This gene cluster arose from a duplicated gastrointestinal hormone gene that attained a HLP-like defense function after major remodeling of its promoter region. Instead, new defense functions, including antimicrobial activity, arose by mutation of the precursor proteins, resulting in the proteolytic processing of secondary peptides alongside the original ones. Although gene duplication did not trigger functional innovation, it may have subsequently facilitated the convergent loss of the original function in multiple gene lineages (subfunctionalization), completing their transformation from HLP gene to AMP gene. The processing of multiple peptides from a single precursor entails a mechanism through which peptide-encoding genes may establish new functions without the need for gene duplication to avoid adaptive conflicts with older ones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731216 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1003662 | DOI Listing |
J Clin Invest
January 2025
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Ischemic stroke is a major cause of adult disability. Early treatment with thrombolytics and/or thrombectomy can significantly improve outcomes; however, following these acute interventions, treatment is limited to rehabilitation therapies. Thus, the identification of therapeutic strategies that can help restore brain function in the post-acute phase remains a major challenge.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.
View Article and Find Full Text PDFKlin Mikrobiol Infekc Lek
March 2024
Institute of Microbiology, Faculty of Medicine, Palacky University in Olomouc, Czech Repubic, e-mail:
Objective: This study aimed to evaluate the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) at the University Hospital Olomouc (UHO) over a 10-year period (2013-2022).
Material And Methods: Data was obtained from the ENVIS LIMS laboratory information system (DS Soft, Czech Republic, Olomouc) of the Department of Microbiology, UHO, for the period 1/1/2013-31/12/2022. Standard microbiological procedures using the MALDI-TOF MS system (Biotyper Microflex, Bruker Daltonics) were applied for the identification.
GM Crops Food
December 2025
School of Life Science, Henan University, Kaifeng, Henan, People's Republic of China.
Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
University of Chicago, Chicago, IL, United States.
Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!