We propose a method to formulate probabilistic models of protein structure in atomic detail, for a given amino acid sequence, based on Bayesian principles, while retaining a close link to physics. We start from two previously developed probabilistic models of protein structure on a local length scale, which concern the dihedral angles in main chain and side chains, respectively. Conceptually, this constitutes a probabilistic and continuous alternative to the use of discrete fragment and rotamer libraries. The local model is combined with a nonlocal model that involves a small number of energy terms according to a physical force field, and some information on the overall secondary structure content. In this initial study we focus on the formulation of the joint model and the evaluation of the use of an energy vector as a descriptor of a protein's nonlocal structure; hence, we derive the parameters of the nonlocal model from the native structure without loss of generality. The local and nonlocal models are combined using the reference ratio method, which is a well-justified probabilistic construction. For evaluation, we use the resulting joint models to predict the structure of four proteins. The results indicate that the proposed method and the probabilistic models show considerable promise for probabilistic protein structure prediction and related applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.24386DOI Listing

Publication Analysis

Top Keywords

probabilistic models
16
protein structure
16
models protein
12
structure
8
structure atomic
8
atomic detail
8
reference ratio
8
ratio method
8
nonlocal model
8
models
6

Similar Publications

Machine learning assisted classification RASAR modeling for the nephrotoxicity potential of a curated set of orally active drugs.

Sci Rep

January 2025

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.

We have adopted the classification Read-Across Structure-Activity Relationship (c-RASAR) approach in the present study for machine-learning (ML)-based model development from a recently reported curated dataset of nephrotoxicity potential of orally active drugs. We initially developed ML models using nine different algorithms separately on topological descriptors (referred to as simply "descriptors" in the subsequent sections of the manuscript) and MACCS fingerprints (referred to as "fingerprints" in the subsequent sections of the manuscript), thus generating 18 different ML QSAR models. Using the chemical spaces defined by the modeling descriptors and fingerprints, the similarity and error-based RASAR descriptors were computed, and the most discriminating RASAR descriptors were used to develop another set of 18 different ML c-RASAR models.

View Article and Find Full Text PDF

Climate change significantly impacts the risk of eutrophication and, consequently, chlorophyll-a (Chl-a) concentrations. Understanding the impact of water flows is a crucial first step in developing insights into future patterns of change and associated risks. In this study, the Statistical DownScaling Model (SDSM)-a widely used daily downscaling method-is implemented to produce downscaled local climate variables, which serve as input for simulating future hydro-climate conditions using a hydrological model.

View Article and Find Full Text PDF

Background: To summarize the statistical performance of machine learning in predicting revision, secondary knee injury, or reoperations following anterior cruciate ligament reconstruction (ACLR), and to provide a general overview of the statistical performance of these models.

Methods: Three online databases (PubMed, MEDLINE, EMBASE) were searched from database inception to February 6, 2024, to identify literature on the use of machine learning to predict revision, secondary knee injury (e.g.

View Article and Find Full Text PDF

Economic impact of prolonged tracheal extubation times on operating room time overall and for subgroups of surgeons: a historical cohort study.

BMC Anesthesiol

January 2025

Department of Anesthesiology, Perioperative Medicine and Pain Management, 1611 NW 12, University of Miami, Miami, FL, 33136, USA.

Background: Prolonged tracheal extubation time is defined as an interval ≥ 15 min from the end of surgery to extubation. An earlier study showed that prolonged extubations had a mean 12.4 min longer time from the end of surgery to operating room (OR) exit.

View Article and Find Full Text PDF

Introduction: Traumatic injuries are a significant public health concern globally, resulting in substantial mortality, hospitalisation and healthcare burden. Despite the establishment of specialised trauma centres, there remains considerable variability in trauma-care practices and outcomes, particularly in the initial phase of trauma resuscitation in the trauma bay. This stage is prone to preventable errors leading to adverse events (AEs) that can impact patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!