Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conductive materials functionalized with redox enzymes provide bioelectronic architectures with application to biological fuel cells and biosensors. Effective electron transfer between the enzyme (biocatalyst) and the conductive materials is imperative for function. Various nanostructured carbon materials are common electrode choices for these applications as both the materials' inherent conductivity and physical integrity aids optimal performance. The following chapter presents a method for the use of carbon nanotube buckypaper as a conductive architecture suitable for biocatalyst functionalization. In order to securely attach the biocatalyst to the carbon nanotube surface, the conductive buckypaper is modified with the heterobifunctional cross-linker, 1-pyrenebutanoic acid, succinimidyl ester. The technique effectively tethers the enzyme to the carbon nanotube which enhances bioelectrocatalysis, preserves the conductive nature of the carbon surface, and facilities direct electron transfer between the catalyst and material interface. The approach is demonstrated using phenol oxidase (laccase) and pyrroloquinoline quinone-dependent glucose dehydrogenase PQQ-GDH, as representative biocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-62703-550-7_14 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!