The term immobilized enzymes refers to "enzymes physically confined or localized in a certain defined region of space with retention of their catalytic activities, and which can be used repeatedly and continuously." Immobilized enzymes are currently the subject of considerable interest because of their advantages over soluble enzymes. In addition to their use in industrial processes, the immobilization techniques are the basis for making a number of biotechnology products with application in diagnostics, bioaffinity chromatography, and biosensors. At the beginning, only immobilized single enzymes were used, after 1970s more complex systems including two-enzyme reactions with cofactor regeneration and living cells were developed. The enzymes can be attached to the support by interactions ranging from reversible physical adsorption and ionic linkages to stable covalent bonds. Although the choice of the most appropriate immobilization technique depends on the nature of the enzyme and the carrier, in the last years the immobilization technology has increasingly become a matter of rational design. As a consequence of enzyme immobilization, some properties such as catalytic activity or thermal stability become altered. These effects have been demonstrated and exploited. The concept of stabilization has been an important driving force for immobilizing enzymes. Moreover, true stabilization at the molecular level has been demonstrated, e.g., proteins immobilized through multipoint covalent binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-62703-550-7_2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!