AI Article Synopsis

Article Abstract

The hydroxyphenyl derivatives of carbon nanostructures (graphene and carbon nanotubes) can be easily transformed into highly organophilic or hydrophilic derivatives by using the ionic interactions between the phenolic groups and oleylamine or tetramethylammonium hydroxide, respectively. The products were finely dispersed in homo-polymers or block co-polymers to create homogeneous carbon-based nanocomposites and were used as nanocarriers for the dispersion and protection of strongly hydrophobic compounds, such as large aromatic chromophores or anticancer drugs in aqueous solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201301200DOI Listing

Publication Analysis

Top Keywords

carbon nanostructures
8
organophilic hydrophilic
8
tuning dispersibility
4
dispersibility carbon
4
nanostructures organophilic
4
hydrophilic preparation
4
preparation multipurpose
4
multipurpose carbon-based
4
carbon-based hybrids
4
hybrids hydroxyphenyl
4

Similar Publications

The environmental impact of chemicals used in aquaculture, particularly nitrofurantoin, has raised global concern. Nitrofurantoin, a broad-spectrum antimicrobial, is commonly used in aquaculture despite safety risks. Determination of nitrofurantoin in water samples of fish ponds is necessary to ensure the safety and quality of seafood.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from branches and leaves using a novel green synthesis approach. The spectral properties of the synthesized NIR-CDs were characterized by ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy.

View Article and Find Full Text PDF

Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).

View Article and Find Full Text PDF

Easy One-Pot Decoration of Graphene Oxide Nanosheets by Green Silver Nanoparticles.

Int J Mol Sci

January 2025

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.

In this study, we developed a facile one-pot synthesis of a nanocomposite consisting of silver nanoparticles (AgNPs) growing over graphene oxide (GO) nanoflakes (AgNPs@GO). The process consists of the in situ formation of AgNPs in the presence of GO nanosheets via the spontaneous decomposition of silver(I) acetylacetonate (Ag(acac)) after dissolution in water. This protocol is compared to an ex situ approach where AgNPs are added to a waterborne GO nanosheet suspension to account for any attractive interaction between preformed nanomaterials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!