The morphological path of droplets on a liquid substrate towards equilibrium is investigated experimentally and theoretically. The droplets emerge in the late stage of a dewetting process of short chained polystyrene (PS) dewetting from liquid polymethyl-methacrylate (PMMA). The three-dimensional droplet profiles are obtained experimentally by combining the in situ imaged PS/air interface during equilibration and the ex situ imaged PS/PMMA interface after removal of the PS by a selective solvent. Numerically the transient drop shapes are calculated by solving the thin-film equation in lubrication approximation using the experimentally determined input parameter like viscosity, film thickness and surface tensions. The numerically obtained droplet morphologies and time scales agree very well with the experimental drop shapes. An unexpected observation is that droplets with identical volumes synchronise their motion and become independent of the initial geometry long time before equilibrium is reached.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1140/epje/i2013-13087-x | DOI Listing |
Heliyon
July 2024
Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XQ, UK.
This study explores the inspection of bolted connections in wind turbines, specifically focusing on the application of Phased Array Ultrasonic Testing (PAUT). The research comprises four sections: Acoustoelastic Constant calibration, high tension investigation on bolts, blind tests on larger bolts, and Finite Element Analysis (FEA) verification. The methodology shows accurate results for stress while the bolt is under operative loads, and produces a clear indication of when it is above these loads and beginning to deform.
View Article and Find Full Text PDFConventional laser micromachining technologies rely on trial-and-error optimization to obtain precise surface geometry. In this study, we present a laser micromachining setup that enables the preparation of the desired surface geometry without the need for parameter exploration. The setup consists of a laser scanning system, a coaxial imaging system, a paraxial laser line projector, and a three-axis stage.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.
View Article and Find Full Text PDFSci Rep
January 2025
Xinqiao Hospital, Army Medical University, 183th, Xinqiao Street, Shapingba District, Chongqing, China.
The purpose of this study was to evaluate the stability of small-incision lenticule extraction (SMILE) and laser in situ keratomileusis (LASIK) when ascending from near sea level to an altitude of 3874 m. The visual acuity (VA), intraocular pressure (IOP), spherical equivalent refraction (SER) and biometric parameters of 20 normal subjects (40 eyes, controls) and 36 subjects who underwent corneal refractive surgery (35 eyes with SMILE and 36 eyes with LASIK) were examined in Chongqing (C, 500 m above sea level) and 7-10 days after a collective travel to Shigatse (S, 3874 m above sea level). SER and corneal thickness (CT) were choosed as main indicators of the stability of corneal refractive surgery at high altitude.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Electronic Engineering, Tsinghua University, Beijing, China.
The rapid development of internet of things (IoT) urgently needs edge miniaturized computing devices with high efficiency and low-power consumption. In-sensor computing has emerged as a promising technology to enable in-situ data processing within the sensor array. Here, we report an optoelectronic array for in-sensor computing by integrating photodiodes (PDs) with resistive random-access memories (RRAMs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!