Clinical experience and research findings suggest that schizophrenia is a disorder comprised of multiple genetic and neurophysiological subtypes with differential response to treatment. Electroencephalography (EEG) is a non-invasive, inexpensive and useful tool for investigating the neurobiology of schizophrenia and its subtypes. EEG studies elucidate the neurophysiological mechanisms potentially underlying clinical symptomatology. In this review article recent advances in applying EEG to study pathophysiology, phenomenology, and treatment response in schizophrenia are discussed. Investigative strategies employed include: analyzing quantitative EEG (QEEG) spectral power during the resting state and cognitive tasks; applying machine learning methods to identify QEEG indicators of diagnosis and treatment response; and using the event-related brain potential (ERP) technique to characterize the neurocognitive processes underlying clinical symptoms. Studies attempting to validate potential EEG biomarkers of schizophrenia and its symptoms, which could be useful in assessing familial risk and treatment response, are also reviewed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11920-013-0388-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!