Aims/hypothesis: Atypical protein kinase C (aPKC) levels and activity are elevated in hepatocytes of individuals with type 2 diabetes and cause excessive increases in the levels of lipogenic and gluconeogenic enzymes; aPKC inhibitors largely correct these aberrations. Metformin improves hepatic gluconeogenesis by activating 5'-AMP-activated protein kinase (AMPK). However, metformin also activates aPKC in certain tissues; in the liver, this activation could amplify diabetic aberrations and offset the positive effects of AMPK. In this study, we examined whether metformin activates aPKC in human hepatocytes and the metabolic consequences of any such activation.
Methods: We compared protein kinase activities and alterations in lipogenic and gluconeogenic enzyme levels during activity of the AMPK activators metformin and AICAR, relative to those of an aPKC-ι inhibitor, in hepatocytes from non-diabetic and type 2 diabetic human organ donors.
Results: Metformin and 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) activated aPKC at concentrations comparable with those required for AMPK activation. Moreover, both agents increased lipogenic enzyme levels by an aPKC-dependent mechanism. Thus, whereas insulin- and diabetes-dependent increases in lipogenic enzyme levels were reversed by aPKC inhibition, such levels were increased in hepatocytes from non-diabetic donors and remained elevated in hepatocytes from diabetic donors following metformin and AICAR treatment. In addition, whereas aPKC inhibition diminished gluconeogenic enzyme levels in the absence and presence of insulin in hepatocytes from both non-diabetic and diabetic donors, metformin and AICAR increased gluconeogenic enzyme levels in hepatocytes from non-diabetic individuals, but nevertheless diminished gluconeogenic enzyme levels in insulin-treated hepatocytes from diabetic donors.
Conclusions/interpretation: Metformin and AICAR activate aPKC together with AMPK in human hepatocytes. Activation of aPKC increases lipogenic enzyme levels and alters gluconeogenic enzyme levels, and therefore appears to offset the positive effects of AMPK.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973184 | PMC |
http://dx.doi.org/10.1007/s00125-013-3010-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!