Adoptive therapy using T cells modified with tumour antigen-specific T cell receptor (TCR) genes has become a popular area of research in tumour biotherapy research. However, the efficiency of this treatment is low. To increase the efficiency of this therapy, the antigen specific TCR expression in the T cells needs to be improved. Adenoviral vector-mediated gene expression is an attractive approach to bypass the issue of TCR gene modification. The efficiency of adenovirus vector serotype 5 (Ad5) infection is low due to the absence of coxsackievirus B-adenovirus receptor (CAR) expression in T cells. In the present study, a chimeric adenoviral vector (Ad5F35L) was generated; this construct contained both the natural long-shaft of Ad5 and the Ad35 knob. A transduction study showed that the Ad5F35L vector exhibited a higher transduction efficiency in human primary T lymphocytes than the Ad5 vector and the Ad5F35S vector, which contained the Ad35 natural short-shaft and the Ad35 knob. Similar transduction efficiencies were observed for both CD4(+) T lymphocytes and CD8(+) T lymphocytes and the transfection was independent of the expression of cell surface receptors. The activation of T lymphocytes resulted in an improvement of the Ad5F35L transduction efficiency in CD4(+) T cells and a decrease in Ad5F35L transduction efficiency in CD8(+) T cells. The results demonstrate that Ad5F35L is a promising viral vector and will facilitate the clinical application of tumour antigen-specific TCR gene therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2013.07.052 | DOI Listing |
Mol Cancer
January 2025
Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
The N6-methyladenosine (m6A) modification serves as an essential epigenetic regulator in eukaryotic cells, playing a significant role in tumorigenesis and cancer progression. However, the detailed biological functions and underlying mechanisms of m6A regulation in gastric cancer (GC) are poorly understood. Our research revealed that the m6A demethylase ALKBH5 was markedly downregulated in GC tissues, which was associated with poor patient prognosis.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.
Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies; School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
Developing a DNA autocatalysis-oriented cascade circuit (AOCC) via reciprocal navigation of two enzyme-free hug-amplifiers might be desirable for constructing a rapid, efficient, and sensitive assay-to-treat platform. In response to a specific trigger (), seven functional DNA hairpins were designed to execute three-branched assembly (TBA) and three isotropic hybridization chain reaction (3HCR) events for operating the AOCC. This was because three new inducers were reconstructed in TBA arms to initiate 3HCR (TBA-to-3HCR) and periodic repeats were resultantly reassembled in the tandem nicks of polymeric nanowires to rapidly activate TBA in the opposite direction (3HCR-to-TBA) without steric hindrance, thereby cooperatively manipulating sustainable AOCC progress for exponential hug-amplification (1:3).
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
Fanconi anemia (FA) is a congenital multisystem disorder characterized by early-onset bone marrow failure (BMF) and cancer susceptibility. While gene addition and repair therapies are being considered as treatment options, depleted hematopoietic stem cell (HSC) pools, poor HSC mobilization, compromised survival during transduction, and increased sensitivity to conventional conditioning strategies limit eligibility for FA patients to receive gene therapies. As an alternative approach, we explored protein replacement by mRNA delivery via lipid nanoparticles (LNPs).
View Article and Find Full Text PDFHeliyon
January 2025
School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Schwann cells, as crucial regenerative cells, possess the ability to facilitate axon growth following peripheral nerve injury. However, the regeneration efficiency dominated by Schwann cells is impaired by factors such as the severity of peripheral nervous injury, aging, and metabolic disease. Cause the limitations of clinical treatments, it is necessary to urgently search for new substances that could reinforce the functionality of Schwann cells and promote nerve regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!