Loss of motoneurons in the ventral compartment of the rat hypoglossal nucleus following early postnatal exposure to alcohol.

J Chem Neuroanat

Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:

Published: September 2013

Perinatal alcohol exposure (AE) has multiple detrimental effects on cognitive and various behavioral outcomes, but little is known about its impact on the autonomic functions. In a rat model of fetal alcohol spectrum disorders (FASD), we investigated neurochemical and neuroanatomical alterations in two brainstem nuclei, the hypoglossal nucleus (XIIn) and the dorsal nucleus of the vagus nerve (Xdn). One group of male Sprague-Dawley rats (n=6) received 2.625 g/kg ethanol intragastrically twice daily on postnatal days (PD) 4-9, a period equivalent to the third trimester of human pregnancy, and another group (n=6) was sham-intubated. On PD 18-19, the rats were perfused and medullary sections were immunohistochemically processed for choline acetyltransferase (ChAT) or two aminergic receptors that mediate excitatory drive to motoneurons, α₁-adrenergic (α₁-R) and serotonin 2A (5-HT(2A)-R), and c-Fos. Based on ChAT labeling, AE rats had reduced numbers of motoneurons in the ventral XIIn (XIIn-v; 35.4±1.3 motoneurons per side and section vs. 40.0±1.2, p=0.022), but not in the dorsal XIIn or Xdn. Consistent with ChAT data, both the numbers of α₁-R-labeled motoneurons in the XIIn-v and the area of the XIIn-v measured using 5-HT(2A)-R staining were significantly smaller in AE rats (19.7±1.5 vs. 25.0±1.4, p=0.031 and 0.063 mm² ±0.002 vs. 0.074±0.002, p=0.002, respectively). Concurrently, both 5-HT(2A)-R and c-Fos staining tended to be higher in AE rats, suggesting an increased activation. Thus, postnatal AE causes motoneuronal loss in the XIIn-v. This may compromise upper airway control and contribute to increased risk of upper airway obstructions and sudden infant death in FASD victims.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816251PMC
http://dx.doi.org/10.1016/j.jchemneu.2013.07.003DOI Listing

Publication Analysis

Top Keywords

motoneurons ventral
8
hypoglossal nucleus
8
5-ht2a-r c-fos
8
upper airway
8
rats
5
loss motoneurons
4
ventral compartment
4
compartment rat
4
rat hypoglossal
4
nucleus early
4

Similar Publications

In motoneurons, spatiotemporal dendritic patterns are established in the ventral nerve cord. While many guidance cues have been identified, the mechanisms of temporal regulation remain unknown. Previously, we identified the actin modulator Cdc42 GTPase as a key factor in this process.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex developmental disorder characterized by several behavioral impairments, especially in socialization, communication, and the occurrence of stereotyped behaviors. In rats, prenatal exposure to valproic acid (VPA) induces autistic-like behaviors. Previous studies by our group have suggested that the autistic-like phenotype is possibly related to dopaminergic system modulation because tyrosine hydroxylase (TH) expression was affected.

View Article and Find Full Text PDF

Developing populations of connected neurons often share spatial and/or temporal features that anticipate their assembly. A unifying spatiotemporal motif might link sensory, central, and motor populations that comprise an entire circuit. In the sensorimotor reflex circuit that stabilizes vertebrate gaze, central and motor partners are paired in time (birthdate) and space (dorso-ventral).

View Article and Find Full Text PDF

In Parkinson's disease, dopaminergic neurons (DANs) in the midbrain gradually degenerate, with ventral substantia nigra pars compacta (SNc) DANs exhibiting greater vulnerability. However, it remains unclear whether specific molecular subtypes of ventral SNc DANs are more susceptible to degeneration in PD, and if they contribute to the early motor symptoms associated with the disease. We identified a subtype of + DANs, +, which are selectively lost earlier than other DANs, and with a time course that aligns with the development of motor symptoms in MitoPark mice.

View Article and Find Full Text PDF

Background: There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!