Despite wide exploitation of corticosteroid drugs for the treatment of asthma, the poor therapeutic effect on a neutrophilic subtype of asthma prohibits the full recovery of asthma patients. In this work, dexamethasone (Dexa) was loaded in Flt1 peptide-hyaluronic acid (HA) conjugate nanoparticles to overcome the limitation of corticosteroid resistance for the treatment of neutrophilic pulmonary inflammation. Flt1 peptide-HA conjugates are self-assembled to nanoparticles because of hydrophobic Flt1 peptide conjugated to HA by benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate (BOP) chemistry. In vitro bioimaging showed efficient internalization of Flt1 peptide-HA conjugate nanoparticles into lung epithelial cells by HA-receptor mediated endocytosis. Also, ex vivo imaging for the biodistribution in ICR mice revealed long-term retention of Flt1 peptide-HA conjugate nanoparticles in deep lung tissues possibly due to mucoadhesive property of HA. On the basis of bioimaging results for pulmonary drug delivery applications, we prepared Dexa-loaded Flt1 peptide-HA conjugate nanoparticles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the formation of nanoparticles, which reduced cytokine levels of lipopolysaccharide (LPS)-stimulated cells more efficiently than free Dexa. Furthermore, according to the bronchoalveolar lavage (BAL) cellularity and histological analysis, Dexa loaded Flt1 peptide-HA conjugate nanoparticles showed remarkable therapeutic effects in both eosinophilic and neutrophilic asthma model mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2013.07.062 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!