Unimolecular micelles formed by dendritic amphiphilic block copolymers poly(amidoamine)-poly(L-lactide)-b-poly(ethylene glycol) conjugated with anti-CD105 monoclonal antibody (TRC105) and 1,4,7-triazacyclononane-N, N', N-triacetic acid (NOTA, a macrocyclic chelator for (64)Cu) (abbreviated as PAMAM-PLA-b-PEG-TRC105) were synthesized and characterized. Doxorubicin (DOX), a model anti-cancer drug, was loaded into the hydrophobic core of the unimolecular micelles formed by PAMAM and PLA via physical encapsulation. The unimolecular micelles exhibited a uniform size distribution and pH-sensitive drug release behavior. TRC105-conjugated unimolecular micelles showed a CD105-associated cellular uptake in human umbilical vein endothelial cells (HUVEC) compared with non-targeted unimolecular micelles, which was further validated by cellular uptake in CD105-negative MCF-7 cells. In 4T1 murine breast tumor-bearing mice, (64)Cu-labeled targeted micelles exhibited a much higher level of tumor accumulation than (64)Cu-labeled non-targeted micelles, measured by serial non-invasive positron emission tomography (PET) imaging and confirmed by biodistribution studies. These unimolecular micelles formed by dendritic amphiphilic block copolymers that synergistically integrate passive and active tumor-targeting abilities with pH-controlled drug release and PET imaging capabilities provide the basis for future cancer theranostics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785312PMC
http://dx.doi.org/10.1016/j.biomaterials.2013.07.085DOI Listing

Publication Analysis

Top Keywords

unimolecular micelles
28
micelles formed
12
micelles
9
formed dendritic
8
dendritic amphiphilic
8
amphiphilic block
8
block copolymers
8
micelles exhibited
8
drug release
8
cellular uptake
8

Similar Publications

Dually fluorinated unimolecular micelles for stable oxygen-carrying and enhanced photosensitive efficiency to boost photodynamic therapy against hypoxic tumors.

Acta Biomater

January 2025

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China. Electronic address:

Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles.

View Article and Find Full Text PDF

The chemical structure of a delivery nanovehicle plays a pivotal role in determining the efficiency of drug delivery within the body. Leveraging the unique architecture of bottlebrush (BB) polymers-characterized by variations in backbone length, grafting density, and self-assembly morphology-offers a novel approach to understanding the influence of structural properties on biological behavior. In this study, developed a drug delivery system based on core-shell BB polymers synthesized using a "grafting-from" strategy.

View Article and Find Full Text PDF

Nanocarrier-mediated therapeutic delivery to brain tissue is impeded by tightly controlled transportation across the blood-brain barrier (BBB). Herein, we report a well-defined core-shell star-shaped unimolecular micelle (star-UMM; a single polymer entity) as an efficient BBB-breaching nanoparticle for brain-specific administration of the fluorescent anticancer drug doxorubicin and mapping of brain tissues by the near-infrared biomarker IR780 in mice. The star-UMM was engineered by precisely programming the polymer topology having hydrophobic and hydrophilic polycaprolactone blocks and in-built with lysosomal enzyme-biodegradation stimuli to deliver the payloads at intracellular compartments.

View Article and Find Full Text PDF

Controlled Fabrication of Unimolecular Micelles as Versatile Nanoplatform for Multifunctional Applications.

Small

November 2024

School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China.

Unimolecular micelles (UMs) are nano-sized structures that are composed of single molecules with precise composition. Compared to self-assembled polymeric micelles, UMs possess ultra-stable property even in complex biological environment. With the development of controllable polymerization and coupling chemistry, the preparation of narrowly monodispersed UMs with precise morphology and size has been realized, which further facilitates their multifunctional applications.

View Article and Find Full Text PDF

Precise Construction of Chiral Plasmonic Nanoparticles for Enantioselective Discrimination.

J Phys Chem Lett

August 2024

Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

Article Synopsis
  • * This study introduces a new method for creating chiral gold nanoparticles using star-like block copolymers as templates, allowing better control over the nanoparticles' size, shape, and chirality.
  • * The research shows that these chiral nanoparticles can achieve significant enhancement in surface-enhanced Raman scattering, leading to improved chiral recognition on various surfaces, suggesting a promising approach for developing specialized chiral nanomaterials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!