Unimolecular micelles formed by dendritic amphiphilic block copolymers poly(amidoamine)-poly(L-lactide)-b-poly(ethylene glycol) conjugated with anti-CD105 monoclonal antibody (TRC105) and 1,4,7-triazacyclononane-N, N', N-triacetic acid (NOTA, a macrocyclic chelator for (64)Cu) (abbreviated as PAMAM-PLA-b-PEG-TRC105) were synthesized and characterized. Doxorubicin (DOX), a model anti-cancer drug, was loaded into the hydrophobic core of the unimolecular micelles formed by PAMAM and PLA via physical encapsulation. The unimolecular micelles exhibited a uniform size distribution and pH-sensitive drug release behavior. TRC105-conjugated unimolecular micelles showed a CD105-associated cellular uptake in human umbilical vein endothelial cells (HUVEC) compared with non-targeted unimolecular micelles, which was further validated by cellular uptake in CD105-negative MCF-7 cells. In 4T1 murine breast tumor-bearing mice, (64)Cu-labeled targeted micelles exhibited a much higher level of tumor accumulation than (64)Cu-labeled non-targeted micelles, measured by serial non-invasive positron emission tomography (PET) imaging and confirmed by biodistribution studies. These unimolecular micelles formed by dendritic amphiphilic block copolymers that synergistically integrate passive and active tumor-targeting abilities with pH-controlled drug release and PET imaging capabilities provide the basis for future cancer theranostics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785312 | PMC |
http://dx.doi.org/10.1016/j.biomaterials.2013.07.085 | DOI Listing |
Acta Biomater
January 2025
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China. Electronic address:
Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles.
View Article and Find Full Text PDFSmall
December 2024
Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada.
The chemical structure of a delivery nanovehicle plays a pivotal role in determining the efficiency of drug delivery within the body. Leveraging the unique architecture of bottlebrush (BB) polymers-characterized by variations in backbone length, grafting density, and self-assembly morphology-offers a novel approach to understanding the influence of structural properties on biological behavior. In this study, developed a drug delivery system based on core-shell BB polymers synthesized using a "grafting-from" strategy.
View Article and Find Full Text PDFNanoscale
November 2024
Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
Nanocarrier-mediated therapeutic delivery to brain tissue is impeded by tightly controlled transportation across the blood-brain barrier (BBB). Herein, we report a well-defined core-shell star-shaped unimolecular micelle (star-UMM; a single polymer entity) as an efficient BBB-breaching nanoparticle for brain-specific administration of the fluorescent anticancer drug doxorubicin and mapping of brain tissues by the near-infrared biomarker IR780 in mice. The star-UMM was engineered by precisely programming the polymer topology having hydrophobic and hydrophilic polycaprolactone blocks and in-built with lysosomal enzyme-biodegradation stimuli to deliver the payloads at intracellular compartments.
View Article and Find Full Text PDFSmall
November 2024
School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China.
Unimolecular micelles (UMs) are nano-sized structures that are composed of single molecules with precise composition. Compared to self-assembled polymeric micelles, UMs possess ultra-stable property even in complex biological environment. With the development of controllable polymerization and coupling chemistry, the preparation of narrowly monodispersed UMs with precise morphology and size has been realized, which further facilitates their multifunctional applications.
View Article and Find Full Text PDFJ Phys Chem Lett
August 2024
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!