Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production.

Bioresour Technol

Laboratorio de Microbiología Experimental, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, 04510 México City, Mexico.

Published: October 2013

The green microalga Scenedesmus acutus was cultivated in two different municipal wastewater discharges (pre- and post-treated), and was compared to a culture medium with basic nutrients (20% of N, P, K), in order to study the simultaneous potential of nutrient removal and lipid accumulation ability. The highest level of nutrient removal was found in the pretreated wastewater discharge (achieving a high removal of phosphorus [66%] and organic nitrogen [94%]). Likewise, better results on biomass productivity and lipid accumulation were found in cultures using pretreated wastewater compared to enriched medium, obtaining 79.9 mg/L, and 280 mg/L, respectively. Since the best results were found in pretreated wastewater, the biodiesel preparation was performed using said medium at small-scale. After cultivation, 249.4 mg/L of biodiesel were obtained. According to this analysis, S. acutus could be used for wastewater treatment producing biomass with a suitable content of lipids, convenient for biodiesel production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.07.061DOI Listing

Publication Analysis

Top Keywords

nutrient removal
12
lipid accumulation
12
pretreated wastewater
12
green microalga
8
microalga scenedesmus
8
scenedesmus acutus
8
municipal wastewater
8
removal lipid
8
biodiesel production
8
wastewater
6

Similar Publications

Polyhydroxyalkanoates (PHA) are bioplastics produced by few bacteria as intracellular lipid inclusions under excess carbon source and nutrient-deprived conditions. These polymers are biodegradable and resemble petroleum-based plastics. The rising environmental concerns have increased the demand for PHA, but the low yield in wild-type bacterial strains limits large-scale production.

View Article and Find Full Text PDF

In addition to their advantages as promising methods for wastewater treatment, CWs exhibit poor performance in terms of N and P removal efficiency in the effluent of wastewater treatment plants. By focusing on this issue, we designed CWs integrated with a biochar-doped activated carbon cloth (ACC) electrode and alum sludge from water treatment plants as a substrate to achieve concomitant organic matter and nutrient removal efficiency. Compared with the use of one layer of alum sludge in CWs (CWs-C3) with ACC electrodes inserted in two layers, which uses one layer of alum sludge, a significant improvement in removal efficiency was achieved (96% for COD; 89% for TN; and 77% for TP).

View Article and Find Full Text PDF

Extracellular polymeric substances (EPS) are well-acknowledged to accelerate microalgal biofilm formation, yet specific role of stratified EPS is unknown. Bacterial biofilm stratified EPS could enrich phosphorus, whether microalgal biofilm stratified EPS could also realize phosphorus or nitrogen enrichment remains unclarified. This study investigated microalgae dominant biofilm growth characteristics and nutrients removal via inoculating microalgae and stratified bacterial EPS at various microalgae:bacteria ratios.

View Article and Find Full Text PDF

Constructed wetlands (CWs) with low carbon properties represented an effective approach for treating low-polluted water and improving water quality. Here, a research scheme was proposed to achieve maximum operation benefits of the large-scale CWs through parameter identification, operation simulation, evaluation, and analysis of the water quality process. Based on the two-dimensional water hydrodynamic model coupling with the Eco-Lab water quality module (with nutrients), simulation for Bagong hybrid CWs was successfully conducted.

View Article and Find Full Text PDF

Cyanobacterial phycoremediation: a sustainable approach to dairy wastewater management.

Environ Technol

January 2025

Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India.

The dairy industry is a significant sector within the food industries, known for its high-water consumption and consequent generation of dairy wastewater (DWW), which is rich in pollutants like Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). Improper disposal of DWW poses serious environmental challenges, including eutrophication and highlighting the need for sustainable biological treatment methods. This study investigates the potential of indigenous cyanobacterial strains , , , and for the bioremediation of DWW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!