Giant axonal neuropathy (GAN) is a rare hereditary autosomal recessive neurodegenerative disease affecting both the peripheral and the central nervous system. Clinically it is characterized by an age of onset during the first decade, progressive and severe motor sensory neuropathy followed, in some patients, by the occurrence of various central nervous system signs such as cerebellar syndrome, upper motor neuron signs, or epilepsy. Although kinky hairs are reported in the majority of patients, it is not a constant finding. The prognosis is usually severe with death occurring during the second or third decade; nevertheless a less severe course is reported in some patients. The presence of a variable number of giant axons filled with neurofilaments in the nerve biopsy represents the pathological feature of the disease and it is usually associated to a variable degree with axonal loss and demyelization. Giant axons are also found in the central nervous system associated with Rosenthal fibers and a variable degree of involvement of white matter and neuronal loss. The disease is caused by mutation in the GAN gene encoding for gigaxonin, a member of BTB-Kelch. Up to now 37 mutations in the GAN gene have been reported. These mutations are scattered over the 11 exons of the gene without a clear genotype-phenotype correlation. These mutations resulting in gigaxonin deficiency lead to a slow down in ubiquitin-mediated protein degradation and possibly of other unidentified proteins. GAN represents a good model of a neurodegenerative disorder in which there is a primary defect of the ubiquitin proteasome system and its network with neurofilaments. The clarification of molecular mechanisms involved in GAN can help in understanding other frequent neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-444-52902-2.00052-7 | DOI Listing |
Dev Growth Differ
January 2025
Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan.
The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.
View Article and Find Full Text PDFJ Neurochem
January 2025
Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
Epitranscriptomic regulation of cell functions involves multiple post-transcriptional chemical modifications of coding and non-coding RNA that are increasingly recognized in studying human brain disorders. Although rodent models are presently widely used in neuroepitranscriptomic research, the zebrafish (Danio rerio) has emerged as a useful and promising alternative model species. Mounting evidence supports the importance of RNA modifications in zebrafish CNS function, providing additional insights into epitranscriptomic mechanisms underlying a wide range of brain disorders.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals.
View Article and Find Full Text PDFMol Oncol
January 2025
Department of Medicine A, Hematology, Oncology and Pneumology, University of Münster, Germany.
The transcriptomic classification of primary colorectal cancer (CRC) into distinct consensus molecular subtypes (CMSs) is a well-described strategy for patient stratification. However, the molecular nature of CRC metastases remains poorly investigated. To this end, this study aimed to identify and compare organotropic CMS frequencies in CRC liver and brain metastases.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!