Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Macrophages control the resolution of inflammation through the transition from a proinflammatory (M1) to an anti-inflammatory (M2) phenotype. Here, we present evidence for a role of AMPKα1, a master regulator of energy homeostasis, in macrophage skewing that occurs during skeletal muscle regeneration. Muscle regeneration was impaired in AMPKα1(-/-) mice. In vivo loss-of-function (LysM-Cre;AMPKα1(fl/fl) mouse) and rescue (bone marrow transplantation) experiments showed that macrophagic AMPKα1 was required for muscle regeneration. Cell-based experiments revealed that AMPKα1(-/-) macrophages did not fully acquire the phenotype or the functions of M2 cells. In vivo, AMPKα1(-/-) leukocytes did not acquire the expression of M2 markers during muscle regeneration. Skewing from M1 toward M2 phenotype upon phagocytosis of necrotic and apoptotic cells was impaired in AMPKα1(-/-) macrophages and when AMPK activation was prevented by the inhibition of its upstream activator, CaMKKβ. In conclusion, AMPKα1 is crucial for phagocytosis-induced macrophage skewing from a pro- to anti-inflammatory phenotype at the time of resolution of inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmet.2013.06.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!