Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale And Objectives: Efforts to decrease radiation exposure during pediatric high-resolution thoracic computed tomography (HRCT), while maintaining diagnostic image quality, are imperative. The objective of this investigation was to compare organ doses and scan performance for pediatric HRCT using volume, helical, and noncontiguous axial acquisitions.
Materials And Methods: Thoracic organ doses were measured using 20 metal oxide semiconductor field-effect transistor dosimeters. Mean and median organ doses and scan durations were determined and compared for three acquisition modes in a 5-year-old anthropomorphic phantom using similar clinical pediatric scan parameters. Image noise was measured and compared in identical regions within the thorax.
Results: There was a significantly lower dose in lung (1.8 vs 2.7 mGy, P < .02) and thymus (2.3 vs 2.7 mGy, P < .02) between volume and noncontiguous axial modes and in lung (1.8 vs 2.3 mGy, P < .02), breast (1.8 vs 2.6 mGy, P < .02), and thymus (2.3 vs 2.4 mGy, P < .02) between volume and helical modes. There was a significantly lower median image noise for volume compared to helical and axial modes in lung (55.6 vs 79.3 and 70.7) and soft tissue (76.0 vs 111.3 and 89.9). Scan times for volume, helical, and noncontiguous axial acquisitions were 0.35, 3.9, and 24.5 seconds, respectively.
Conclusion: Volumetric HRCT provides an opportunity for thoracic organ dose and image noise reduction, at significantly faster scanning speeds, which may benefit pediatric patients undergoing surveillance studies for diffuse lung disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2013.05.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!