In this paper, we discussed our recent experience with the use of computational modeling tools in studying the binding interaction of small molecular weight ligands with their protein targets. Specific examples discussed here include the interaction of estrogens with human protein disulfide isomerase (PDI) and its pancreas-specific homolog (PDIp), and the interaction of dietary flavonoids with human cyclooxygenase (COX) I and II. Using human PDIp as an example, biochemical analysis revealed that the estrogen-binding activity is only associated with PDIp's b-b´ domain combination but not associated with the single b or b´ domain or any other domains. Homology modeling was then used to build a threedimensional structure of the human PDIp's b-b´ fragment. Docking analyses predicted that a hydrogen bond, formed between the 3-hydroxyl group of estradiol and His278 of PDIp's E2-binding site, is critical for the binding interaction. This binding model was then experimentally confirmed by a series of experiments, such as selective mutations of the predicted binding site amino acid residues and the selective modifications of the functional groups of the ligands. Similar combinatorial approaches were used successfully to identify the binding site structure of human PDI for estradiol and the binding site structures of human COX I and II for their phenolic co-substrates. The success with these combinatorial approaches provides the basis for using computational modeling-guided approaches in characterizing the ligand binding site structures of complex proteins whose structures are difficult to decipher with crystallographic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/09298673113209990207 | DOI Listing |
BMC Vet Res
January 2025
Division of Oncology, Department of Clinical Sciences, Lund University, Lund, 22381, Sweden.
Background: Prostaglandin E2 (PGE2) is vital for embryo implantation and decidualization. Whether COX2/mPGES1/PGE2 pathway is essential for mouse and human decidualization remains unclear.
Results: This study showed that mPGES1 was highly expressed in the mouse uterus's subluminal stromal cells at the implantation site.
Sci Rep
January 2025
Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
This paper describes the design, development, synthesis, in silico, and in vitro evaluation of fourteen novel heterocycle hybrids as inhibitors of the α-glucosidase enzyme. The primary aim of this study was to explore the potential of novel pyrazole-phthalazine hybrids as selective inhibitors of α-glucosidase, an enzyme involved in carbohydrate metabolism, which plays a key role in the management of type 2 diabetes. The rationale for this study stems from the need for new, more effective inhibitors of α-glucosidase with improved efficacy and safety profiles compared to currently available therapies like Acarbose.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea.
4-α-Glucanotransferase (4-α-GTase, EC 2.4.1.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt. Electronic address:
This study presents the design, synthesis, and evaluation of a novel series of coumarin-based compounds (9a-t) as potential anticancer agents. The compounds were strategically designed to inhibit cancer-related carbonic anhydrase (CA) isoforms IX and XII and tubulin polymerization. Two approaches were employed for CA inhibition: utilizing the coumarin motif to occlude the CA active site entrance and incorporating zinc-binding groups (sulfonamide, carboxylic acid, and thiol) to interact with the catalytic zinc ion.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina. Electronic address:
Our previous studies demonstrated that the enzyme aldose reductase (AR) is activated by its interaction with tubulin, a mechanism which can lead to the emergence of secondary diseases in diabetic patients. We also found that different compounds derived from phenolic acid (CAFs) can prevent this interaction and thus AR activation. Here, we used spectroscopic and bioinformatic techniques to explore the interaction between AR and three CAFs: 3-nitrotyrosine (NTyr), Tyrosine (Tyr), and vanillic acid (Van).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!