Growing evidence shows the possibility of a role of microRNAs (miRNA) in regulating bone mass. We investigated the change of miRNAs and mRNA expression profiles in bone tissue in an ovariectomized mice model and evaluated the regulatory mechanism of bone mass mediated by miRNAs in an estrogen-deficiency state. Eight-week-old female C3H/HeJ mice underwent ovariectomy (OVX) or sham operation (Sham-op), and their femur and tibia were harvested to extract total bone RNAs after 4 weeks for microarray analysis. Eight miRNAs (miR-127, -133a, -133a*, -133b, -136, -206, -378, -378*) were identified to be upregulated after OVX, whereas one miRNA (miR-204) was downregulated. Concomitant analysis of mRNA microarray revealed that 658 genes were differentially expressed between OVX and Sham-op mice. Target prediction of differentially expressed miRNAs identified potential targets, and integrative analysis using the mRNA microarray results showed that PPARγ and CREB pathways are activated in skeletal tissues after ovariectomy. Among the potential candidates of miRNA, we further studied the role of miR-127 in vitro, which exhibited the greatest changes after OVX. We also studied the effects of miR-136, which has not been studied in the context of bone mass regulation. Transfection of miR-127 inhibitor has enhanced osteoblastic differentiation in UAMS-32 cells as measured by alkaline phosphatase activities and mRNA expression of osteoblast-specific genes, whereas miR-136 precursor has inhibited osteoblastic differentiation. Furthermore, transfection of both miR-127 and miR-136 inhibitors enhanced the osteocyte-like morphological changes and survival in MLO-Y4 cells, whereas precursors of miR-127 and -136 have aggravated dexamethasone-induced cell death. Both of the precursors enhanced osteoclastic differentiation in bone marrow macrophages, indicating that both miR-127 and -136 are negatively regulating bone mass. Taken together, these results suggest a novel insight into the association between distinct miRNAs expression and their possible role through regulatory network with mRNAs in the pathogenesis of estrogen deficiency-induced osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbmr.2060 | DOI Listing |
Cancer Rep (Hoboken)
January 2025
Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
Background: Denosumab represents a valuable treatment option for unresectable giant cell tumors of the bone (GCTBs). However, no standardized protocols exist determining the length of administration, with few studies having been published on patients who reached the end of treatment.
Aims: To analyze the outcomes of patients diagnosed with GCTB and who had finished single treatment with denosumab.
J Foot Ankle Res
March 2025
Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
Background: Midfoot pain is common but poorly understood, with radiographs often indicating no anomalies. This study aimed to describe bone, joint and soft tissue changes and to explore associations between MRI-detected abnormalities and clinical symptoms (pain and disability) in a group of adults with midfoot pain, but who were radiographically negative for osteoarthritis.
Methods: Community-based participants with midfoot pain underwent an MRI scan of one foot and scored semi-quantitatively using the Foot OsteoArthritis MRI Score (FOAMRIS).
Can Assoc Radiol J
January 2025
Department of Medicine, McGill University, Montreal, QC, Canada.
Radiologists and other diagnostic imaging specialists play a pivotal role in the management of osteoporosis, a highly prevalent condition of reduced bone strength and increased fracture risk. Bone mineral density (BMD) measurement with dual-energy X-ray absorptiometry (DXA) is a critical component of identifying individuals at high risk for fracture. Strategies to prevent fractures are consolidated in the Osteoporosis Canada clinical practice guideline which was updated in 2023.
View Article and Find Full Text PDFCan Assoc Radiol J
January 2025
Division of Nuclear Medicine, St. Paul's Hospital, Vancouver, BC, Canada.
This practice guideline serves as an update to the Canadian Association of Radiologists' 2013 Technical Standards for Bone Mineral Densitometry Reporting. It aims to align bone mineral density testing and reporting practices in Canada with current clinical best practices, including guidelines from Osteoporosis Canada and the International Society for Clinical Densitometry. Key updates include the endorsement of both FRAX and CAROC tools for evaluating fracture risk, guidance for analyzing male patients and transgender patients, and provision of clinical management guidance of relevance to BMD reporting harmonized with that of Osteoporosis Canada.
View Article and Find Full Text PDFExpert Opin Pharmacother
January 2025
Department of Endocrinology, 424 General Military Hospital, Thessaloniki, Greece.
Introduction: Osteoporosis is a metabolic skeletal disease characterized by low bone mass and strength, and increased risk for fragility fractures. It is a major health issue in aging populations, due to fracture associated increased disability and mortality. Antiresorptive treatments are first line choices in most of the cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!