Clematichinenoside is a triterpenoid saponin isolated from the roots of Clematis chinensis. Oxidative stress and excessive nitric oxide production are thought to play considerable roles in ischemia/reperfusion injury that impairs cardiac function. The present study investigated the protective effect of clematichinenoside on regional and global ischemia/reperfusion injury and ventricular myocytes. In vivo, regional myocardial ischemia/reperfusion injury of rats was induced by the occlusion of the left anterior descending coronary artery, and isolated guinea pigs heart using Langendorff apparatus served as a global ischemia/reperfusion injury model ex vivo. Primary cultured neonatal ventricular myocytes were further applied to explore the anti-ischemia/reperfusion injury property in vitro. Infarct size was measured with TTC stain; enzyme activities such as lactate dehydrogenase, creatine kinase, superoxide dismutase, malondialdehyde, and nitric oxide were analyzed with assay kits; inducible nitric oxide synthase and endothelial nitric oxide synthase expressions were determined by Western blot. Clematichinenoside attenuated infarct size, decreased lactate dehydrogenase, creatine kinase, and malondialdehyde levels and enhanced superoxide dismutase activity. Clematichinenoside improved hemodynamics indexes, such as left ventricular developed pressure, maximum left ventricular developed pressure, and increase/decrease rate (± dp/dtmax) in the isolated guinea pig heart after reperfusion. Clematichinenoside also inhibited excessive production of nitric oxide through downregulating inducible nitric oxide synthase as well as upregulating endothelial nitric oxide synthase during ischemia/reperfusion injury. Clematichinenoside attenuates ischemia/reperfusion injury in vivo, ex vivo, and in vitro via an antioxidant effect and by restoring the balance between inducible nitric oxide synthase and endothelial nitric oxide synthase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0033-1350671 | DOI Listing |
Sex Med
December 2024
Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington 98431, United States.
Background: Pelvic trauma can have long-lasting debilitating effects, including severe erectile dysfunction (ED) in men. While there are effective treatments for ED, these treat the symptoms not the cause. Those who suffer from an acute traumatic injury to the neurovascular supply of penis, may benefit from regenerative therapy.
View Article and Find Full Text PDFBr J Nutr
January 2025
Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Science, Tabriz, Iran.
The therapeutic effects of probiotics in patients with traumatic brain injury (TBI) remain unclear. This study aimed to investigate the effects of probiotic supplementation on cell adhesion molecules, oxidative stress, and antioxidant parameters in TBI patients. This randomized, double-blind, placebo-controlled trial included 46 TBI patients who were randomly assigned to receive either a probiotic supplement (n = 23) or a placebo (n = 23) for 14 days.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Gastroenterology, The Second Hospital of Heilongjiang Province, Harbin City, Heilongjiang Province, China.
Colorectal cancer (CRC) represents a significant global health challenge, with approximately 1.8 million new cases diagnosed annually and a mortality toll exceeding 881,000 lives each year. This study aimed to evaluate the chemoprotective efficacy of Cyanidin-3-glucoside (C3G) in a rat model of CRC induced by 1,2-dimethylhydrazine (DMH).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:
Calcium-based nanomaterials-mediated Ca overload-induced pyroptosis and its application in tumor therapy have received considerable attention. However, the calcium buffering capacity of tumor cells can maintain mitochondrial calcium homeostasis, so it is important to effectively disrupt this homeostasis to activate pyroptosis. Here, a nano-modulator CUR@CaCO-PArg@HA (CCAH) was developed to regulate calcium overload in multiple channels and activate pyroptosis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.. Electronic address:
This study comprehensively explores the relationship between the structure of carboxymethyl-pachymaran (CMP) and its diverse biological activities, including immunomodulation, anti-inflammatory effects, tumor cell proliferation inhibition, and antioxidant activity. By adjusting preparation parameters, highly purified CMP samples with varying degrees of substitution (DS) and molecular weights (Mw) were successfully obtained. The results indicate that CMP, composed primarily of β-D-glucan, exhibits different levels of activity depending on its structural characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!