We are developing a novel PET detector with 3D isotropic resolution called a crystal (X'tal) cube. The X'tal cube detector consists of a crystal block all 6 surfaces of which are covered with silicon photomultipliers (SiPMs). We have developed a prototype detector with 3D isotropic 1 mm resolution. On the other hand, when the X'tal cubes are arranged to form a PET scanner, insensitive inter-detector gaps made by the SiPM arrays should not be too wide, or, better yet, they should be removed. Reduction of the number of SiPMs will also be reflected in the production costs. Therefore, reducing the number of faces to be connected to the SiPMs has become our top priority. In this study, we evaluated the effect of reducing the number of SiPMs on the positioning accuracy through numerical simulations. Simulations were performed with the X'tal cube, which was composed of a 6 × 6 × 6 array of Lu2x Gd2(1-x)SiO5:Ce crystal elements with dimensions of (3.0 mm)(3). Each surface of the crystal block was covered with a 4 × 4 array of SiPMs, each of which had a (3.0 mm)(2) active area. For material between crystal elements, we compared two: optical glue and an air gap. The air gap showed a better crystal identification performance than did the optical glue, although a good crystal identification performance was obtained even with optical glue for the 6-face photodetection. In conclusion, the number of photodetection faces could be reduced to two when the gap material was air.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12194-013-0229-yDOI Listing

Publication Analysis

Top Keywords

x'tal cube
16
optical glue
12
number photodetection
8
photodetection faces
8
pet detector
8
crystal
8
detector isotropic
8
crystal block
8
number sipms
8
reducing number
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!