Attenuation and immunogenicity of host-range extended modified vaccinia virus Ankara recombinants.

Vaccine

Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.

Published: September 2013

Modified vaccinia virus Ankara (MVA) is being widely investigated as a safe smallpox vaccine and as an expression vector to produce vaccines against other infectious diseases and cancer. MVA was isolated following more than 500 passages in chick embryo fibroblasts and suffered several major deletions and numerous small mutations resulting in replication defects in human and most other mammalian cells as well as severe attenuation of pathogenicity. Due to the host range restriction, primary chick embryo fibroblasts are routinely used for production of MVA-based vaccines. While a replication defect undoubtedly contributes to safety of MVA, it is worth considering whether host range and attenuation are partially separable properties. Marker rescue transfection experiments resulted in the creation of recombinant MVAs with extended mammalian cell host range. Here, we characterize two host-range extended rMVAs and show that they (i) have acquired the ability to stably replicate in Vero cells, which are frequently used as a cell substrate for vaccine manufacture, (ii) are severely attenuated in immunocompetent and immunodeficient mouse strains following intranasal infection, (iii) are more pathogenic than MVA but less pathogenic than the ACAM2000 vaccine strain at high intracranial doses, (iv) do not form lesions upon tail scratch in mice in contrast to ACAM2000 and (v) induce protective humoral and cell-mediated immune responses similar to MVA. The extended host range of rMVAs may be useful for vaccine production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787882PMC
http://dx.doi.org/10.1016/j.vaccine.2013.07.057DOI Listing

Publication Analysis

Top Keywords

host range
16
host-range extended
8
modified vaccinia
8
vaccinia virus
8
virus ankara
8
chick embryo
8
embryo fibroblasts
8
mva
5
attenuation immunogenicity
4
immunogenicity host-range
4

Similar Publications

Avian Reovirus: From Molecular Biology to Pathogenesis and Control.

Viruses

December 2024

Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA 30605, USA.

Avian reoviruses (ARVs) represent a significant economic burden on the poultry industry due to their widespread prevalence and potential pathogenicity. These viruses, capable of infecting a diverse range of avian species, can lead to a variety of clinical manifestations, most notably tenosynovitis/arthritis. While many ARV strains are asymptomatic, pathogenic variants can cause severe inflammation and tissue damage in organs such as the tendons, heart, and liver.

View Article and Find Full Text PDF

Among the cultivated crop species, the economically and culturally important grapevine plays host to the greatest number of distinctly characterized viruses. A critical component of the management and containment of these viral diseases in grapevine is both the identification of infected vines and the characterization of new pathogens. Next-generation high-throughput sequencing technologies, i.

View Article and Find Full Text PDF

The Temporal Order of Mixed Viral Infections Matters: Common Events That Are Neglected in Plant Viral Diseases.

Viruses

December 2024

Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, C.P. 30100 Murcia, Spain.

Mixed infections of plant viruses are common in crops and represent a critical biotic factor with substantial epidemiological implications for plant viral diseases. Compared to single-virus infections, mixed infections arise from simultaneous or sequential infections, which can inevitably affect the ecology and evolution of the diseases. These infections can either exacerbate or ameliorate symptom severity, including virus-virus interactions within the same host that may influence a range of viral traits associated with disease emergence.

View Article and Find Full Text PDF

Potyvirus-Based Vectors for Heterologous Gene Expression in Plants.

Viruses

December 2024

Department of Virus Ecology, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia.

Over the past two decades, plant viral vectors have emerged as a powerful tool for the production of recombinant proteins in plants. Among the different plant viruses engineered to carry foreign genes of interest in their genomes, potyviruses have gained attention due to their polyprotein expression strategy and broad host range. To date, at least eleven different species belonging to the genus have been used for heterologous gene expression in both their natural and experimental hosts.

View Article and Find Full Text PDF

Using BW25113 as a host, we isolated a novel lytic phage from the commercial poly-specific therapeutic phage cocktail Sextaphage (Microgen, Russia). We provide genetic and phenotypic characterization of the phage and describe its host range on the ECOR collection of reference strains. The phage, hereafter named Sxt1, is a close relative of classical coliphage T3 and belongs to the genus, yet its internal virion proteins, forming an ejectosome, differ from those of T3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!