Copper and cadmium effects on growth and extracellular exudation of the marine toxic dinoflagellate Alexandrium catenella: 3D-fluorescence spectroscopy approach.

Chemosphere

Université de Carthage, Faculté des Sciences de Bizerte, LCVP, 7021 Jarzouna, Bizerte, Tunisia; Université de Toulon, PROTEE, EA 3819, 83 957 La Garde, France. Electronic address:

Published: October 2013

AI Article Synopsis

  • This study explored how copper and cadmium contamination affects the growth of the dinoflagellate Alexandrium catenella and its production of dissolved organic matter.
  • Significant effects on growth and cyst formation were noted at specific concentrations of both metals, with higher levels completely inhibiting growth.
  • The research also utilized 3D fluorescence spectroscopy to identify characteristics of dissolved organic matter, revealing four components related to biological activity and organic matter decomposition.

Article Abstract

In this study, metal contamination experiments were conducted to investigate the effects of copper and cadmium on the growth of the marine toxic dinoflagellate Alexandrium catenella and on the production of dissolved organic matter (Dissolved Organic Carbon: DOC; Fluorescent Dissolved Organic Matter: FDOM). This species was exposed to increasing concentrations of Cu(2+) (9.93 × 10(-10)-1.00 × 10(-7)M) or Cd(2+) (1.30 × 10(-8)-4.38 × 10(-7)M), to simulate polluted environments. The drastic effects were observed at pCu(2+)=7.96 (Cu(2+): 1.08 × 10(-8)M) and pCd(2+)=7.28 (Cd(2+): 5.19 × 10(-8)M), where cyst formation occurred. Lower levels of Cu(2+) (pCu(2+)>9.00) and Cd(2+) (pCd(2+)>7.28) had no effect on growth. However, when levels of Cu(2+) and Cd(2+) were beyond 10(-7)M, the growth was totally inhibited. The DOC released per cell (DOC/Cell) was different depending on the exposure time and the metal contamination, with higher DOC/Cell values in response to Cu(2+) and Cd(2+), comparatively to the control. Samples were also analyzed by 3D-fluorescence spectroscopy, using the Parallel Factor Analysis (PARAFAC) algorithm to characterize the FDOM. The PARAFAC analytical treatment revealed four components (C1, C2, C3 and C4) that could be associated with two contributions: one, related to the biological activity; the other, linked to the decomposition of organic matter. The C1 component combined a tryptophan peak and a characteristic humic substances response, and the C2 component was considered as a tryptophan protein fluorophore. The C3 and C4 components were associated to marine organic matter production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2013.06.084DOI Listing

Publication Analysis

Top Keywords

organic matter
16
dissolved organic
12
copper cadmium
8
marine toxic
8
toxic dinoflagellate
8
dinoflagellate alexandrium
8
alexandrium catenella
8
3d-fluorescence spectroscopy
8
metal contamination
8
levels cu2+
8

Similar Publications

Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors.

View Article and Find Full Text PDF

Excess biological sludge processing and disposal have a significant impact on the energy balance and economics of wastewater treatment operations, and on receiving environments. Anaerobic digestion is probably the most widespread in-plant sludge processing method globally, since it stabilizes and converts biosolids organic matter into biogas, allowing partial recovery of their embedded chemical energy. A considerable number of studies concerning applicable techniques to improve biogas production, both in quantity and quality, include pre-treatment strategies to promote biosolids disintegration aimed at the release and solubilisation of intracellular energy compounds, inorganic/biological amendments aimed at improving process performance, and sludge thermal pre-treatment.

View Article and Find Full Text PDF

Leveraging almost hydrophobic PVDF membrane and in-situ ozonation in O/UF/BAC system for superior anti-fouling and rejection performance in drinking water treatment.

Water Res

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:

The almost hydrophobic PVDF membrane (PVDF matrix) commonly exhibited excellent performance in pollutant rejection but with poor anti-fouling performance. This study intended to develop the rejection performance and enhance anti-fouling of the PVDF membrane in an O/UF/BAC system for high quality water production through leveraging the advantages of in-situ ozonation and the nature of the PVDF membrane. Reduced density gradient (RDG) analysis demonstrated that the PVDF membrane exhibited excellent ozone resistance by reducing hydrogen bonds and electrostatic interactions between the membrane surface and ozone.

View Article and Find Full Text PDF

Humans are exposed to toxic methylmercury mainly by consuming marine fish, in particular top predator species like billfishes or tunas. In seafood risk assessments, mercury is assumed to be mostly present as organic methylmercury in predatory fishes; yet high percentages of inorganic mercury were recently reported in marlins, suggesting markedly different methylmercury metabolism across species. We quantified total mercury and methylmercury concentrations in muscle of four billfish species from the Indian and the Pacific oceans to address this knowledge gap.

View Article and Find Full Text PDF

Impact of short-term soil disturbance on cadmium remobilization and associated risk in vulnerable regions.

Ecotoxicol Environ Saf

January 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China. Electronic address:

A comprehensive understanding of cadmium (Cd) migration in soils near contaminated hotspots is crucial for optimizing remediation efforts and ensuring crop health. This study investigates agricultural soils from four sites in mining and sewage-irrigation areas, assessing the impact of inorganic and organic fertilizer application on soil Cd remobilization. Results revealed that fertilization, particularly with mineral phosphorus, disrupts soil stability, substantially increases short-term Cd mobility in vulnerable regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!