Exogenous phage recombinase-independent inactivation of chromosomal genes in Yersinia enterocolitica.

J Microbiol Methods

Microbial Pathogenicity Laboratory, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India. Electronic address:

Published: November 2013

Characterization of newly identified genes is necessary to understand their functions. Phenotypic characterization of isogenic mutants provides good understanding of the functions of the genes in wild type strains. In the present study, we report the use of linear dsDNA as a substrate for homologous recombination in Yersinia enterocolitica. A double-stranded linear recombinant DNA (LRD) containing an antibiotic resistance gene flanked by homologous regions to the target gene was created. Transformation of this LRD into Y. enterocolitica led to the replacement of targeted loci with antibiotic resistance gene. Using this strategy, two chromosomal genes namely urease C (ureC) and hemophore A (hasA) were disrupted in three strains of Y. enterocolitica. These recombinations were independent of the EPR functions. This is the first report of EPR-independent inactivation of chromosomal genes in Y. enterocolitica strains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2013.07.023DOI Listing

Publication Analysis

Top Keywords

chromosomal genes
12
inactivation chromosomal
8
yersinia enterocolitica
8
antibiotic resistance
8
resistance gene
8
genes
5
enterocolitica
5
exogenous phage
4
phage recombinase-independent
4
recombinase-independent inactivation
4

Similar Publications

Assembly and Annotation of the Tetraploid Salsola tragus (Russian thistle) Genome.

Genome Biol Evol

January 2025

Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO, 80523, USA.

This report presents two phased chromosome-scale genome assemblies of allotetraploid Salsola tragus (2n=4x=36) and fills the current genomics resource gap for this species. Flow cytometry estimated 1C genome size was 1.319 Gbp.

View Article and Find Full Text PDF

The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants.

View Article and Find Full Text PDF

Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.

View Article and Find Full Text PDF

The (citrus) plant produces various phytohormones due to the significant involvement of the carotenoid cleavage oxygenase () gene family in its growth and development. genes can be divided into two main categories: (9-cis-epoxy carotenoid dioxygenase), responsible for abscisic acid (ABA) production, and (carotenoid cleavage dioxygenase), involved in pigment and strigolactone formation. To better understand the roles and positions of gene members in relation to these hormones, researchers analyzed the clementine genome.

View Article and Find Full Text PDF

Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!