Transcriptional regulation of insulin in pancreatic β-cells is mediated primarily through enhancer elements located within the 5' upstream regulatory region of the preproinsulin gene. Recently, the Krüppel-like transcription factor, Gli-similar 3 (Glis3), was shown to bind the insulin (INS) promoter and positively influence insulin transcription. In this report, we examined in detail the synergistic activation of insulin transcription by Glis3 with coregulators, CREB-binding protein (CBP)/p300, pancreatic and duodenal homeobox 1 (Pdx1), neuronal differentiation 1 (NeuroD1), and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA). Our data show that Glis3 expression, the binding of Glis3 to GlisBS, and its recruitment of CBP are required for optimal activation of the insulin promoter in pancreatic β-cells not only by Glis3, but also by Pdx1, MafA, and NeuroD1. Mutations in the GlisBS or small interfering RNA-directed knockdown of GLIS3 diminished insulin promoter activation by Pdx1, NeuroD1, and MafA, and neither Pdx1 nor MafA was able to stably associate with the insulin promoter when the GlisBS were mutated. In addition, a GlisBS mutation in the INS promoter implicated in the development of neonatal diabetes similarly abated activation by Pdx1, NeuroD1, and MafA that could be reversed by increased expression of exogenous Glis3. We therefore propose that recruitment of CBP/p300 by Glis3 provides a scaffold for the formation of a larger transcriptional regulatory complex that stabilizes the binding of Pdx1, NeuroD1, and MafA complexes to their respective binding sites within the insulin promoter. Taken together, these results indicate that Glis3 plays a pivotal role in the transcriptional regulation of insulin and may serve as an important therapeutic target for the treatment of diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787130 | PMC |
http://dx.doi.org/10.1210/me.2013-1117 | DOI Listing |
iScience
January 2025
The Wallenberg Laboratory, Institute of Medicine University of Gothenburg Sweden, Gothenburg, Sweden.
Mice with genetic ablation of PI3Kγ are protected from diet-induced obesity. However, the cell type responsible for PI3Kγ action in obesity remains unknown. We generated mice with conditional deletion of PI3Kγ in neurons using the nestin promoter to drive the expression of the Cre recombinase (PI3Kγ mice) and investigated their metabolic phenotype in a model of diet-induced obesity.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.
Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.
Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).
Am J Physiol Heart Circ Physiol
January 2025
Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 355 Campus Ring Road, Saint John, New Brunswick, E2L 4L5, Canada.
Lipid phosphate phosphatase 3 (LPP3) is a membrane-bound enzyme that hydrolyzes lipid phosphates including the bioactive lipid, lysophosphatidic acid (LPA). Elevated circulating LPA production and cellular LPA signaling are implicated in obesity-induced metabolic and cardiac dysfunction. Deletion of LPP3 in the cardiomyocyte increases circulating LPA levels and causes heart failure and mitochondrial dysfunction in mice.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China.
Int J Biol Macromol
January 2025
National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Starch is widely used in aquaculture because of its low price and the advantages for processing expanded feed. Largemouth bass are naturally type 2 diabetic and intolerant to dietary carbohydrates. In this study, we found that the phosphorylation of AKT and FoxO1 were down-regulated in the fish suffering from metabolic liver disease (MLD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!