The immobilization of oligonucleotide sequences onto glass supports is central to the field of biodiagnostics and molecular biology with the widespread use of DNA microarrays. However, the influence of confinement on the behavior of DNA immobilized on silica is not well understood owing to the difficulties associated with monitoring this buried interface. Second harmonic generation (SHG) is an inherently surface specific technique making it well suited to observe processes at insulator interfaces like silica. Using a universal 3-nitropyrolle nucleotide as an SHG-active label, we monitored the hybridization rate and thermal dissociation of a 15-mer of DNA immobilized at the silica/aqueous interface. The immobilized DNA exhibits hybridization rates on the minute time scale, which is much slower than hybridization kinetics in solution but on par with hybridization behavior observed at electrochemical interfaces. In contrast, the thermal dissociation temperature of the DNA immobilized on silica is on average 12 °C lower than the analogous duplex in solution, which is more significant than that observed on other surfaces like gold. We attribute the destabilizing affect of silica to its negatively charged surface at neutral pH that repels the hybridizing complementary DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac401009uDOI Listing

Publication Analysis

Top Keywords

thermal dissociation
12
dna immobilized
12
second harmonic
8
harmonic generation
8
immobilized silica
8
dna
6
hybridization
5
monitoring dna
4
dna hybridization
4
hybridization thermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!