Amino acid ionic liquids (AAILs) are potential green substitutes of aqueous amine solutions for carbon dioxide (CO2) capture. However, the viscous nature of AAILs greatly hinders their further development in CO2 capture applications. In this contribution, 1-ethyl-3-methylimidazolium lysine ([EMIM][Lys]) was synthesized and immobilized into a porous poly(methyl methacrylate) (PMMA) microsphere support for post-combustion CO2 capture. The [EMIM][Lys] exhibited good thermal stability and could be facilely immobilized into porous microspheres. Significantly, the [EMIM][Lys]-PMMA sorbents retained their porous structure after [EMIM][Lys] loading and exhibited fast kinetics. When exposed to CO2 at 40 °C, [EMIM][Lys]-PMMA sorbent exhibited the highest CO2 capacity compared to other counterparts studied and achieved a capacity of 0.87 mol/(mol AAIL) or 1.67 mmol/(g sorbent). The capture process may be characterized by two stages: CO2 adsorption on the surface of sorbent and CO2 diffusion into sorbent for further adsorption. The calculated activation energies of the two-stage CO2 sorption were 4.1 and 4.3 kJ/mol, respectively, indicating that, overall, the CO2 can easily adsorb onto this sorbent. Furthermore, multiple cycle tests indicated that the developed sorbents had good long-term stability. The developed sorbent may be a promising candidate for post-combustion CO2 capture.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am402306sDOI Listing

Publication Analysis

Top Keywords

co2 capture
16
co2
10
immobilized porous
8
post-combustion co2
8
capture
6
sorbent
6
amino acid-functionalized
4
acid-functionalized ionic
4
ionic liquid
4
liquid solid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!